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Abstract
In this study, the numerical investigations through the stochastic procedures for solving a
class of fractional order (FO) computer virus propagation (CVP) mathematical model with
kill signals (KS), i.e., CVP-KS is presented. The KS gets alert about those viruses, which
can be infected through the computer system to decrease the virus propagation danger. The
mathematical model of the CVP-KS is based on the SEIR-KS model. The focus of these
investigations is to present the numerical solutions of the FO-SEIR-KS model using the
sense of Levenberg–Marquardt backpropagation scheme (LMBS) together with the neu-
ral networks (NNs), i.e., LMBS-NNs. The use of the one dynamic of the other makes the
model nonlinear. Three different FO values have been used to check the performances of the
designed scheme for this FO-SEIR-KS nonlinear mathematical model. The statics used in
this study is 80%, 10% and 10% for training, testing and certification for solving the FO-
SEIR-KS nonlinear mathematical model. The numerical simulations are performed through
the stochastic LMBS-NNs scheme for solving the FO-SEIR-KS nonlinear mathematical
model. The obtained results will be compared with the design of database reference solu-
tions based on theAdams–Bashforth–Moulton. In order to accomplish the validity, capability,
consistency, competence and accuracy of the LMBS-NNs, the numerical results using the
error histograms, regression, mean square error, state transitions and correlation have been
provided.
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1 Introduction

The computer-based viruses discovered at the end of last century through the malignant
codes with virus, trojan horse, worm, etc. These viruses damaged the small substances,
which have been conducted from the computer network without the system’s information. At
the start, the spreading of the computer viruses was low that was not too harmful, strong and
dangerous. The computer viruses become more harmful with the passage of time due to the
increase of development and globalization of communication. The spread of these viruses is
the threat for the information civilization with the acceleration of their unpleasant activities,
like bank accounts, stealing passwords, email address, big financial damages, changing data
and breaking the precise procedure of a device [1–3].

In order to check the relation between the computer and real biological viruses, e.g., SLBS
[4, 5], SIS [6], SEIRS [7], SIRS [8–10] and stochastic systems [11–13], assisted with the
computer networks and virus spread in an appropriate mode. Virus control [14, 15] and virus
immunization [16, 17] are two variants of the antivirus systems that have been used to fight
against the computer virus spread. Kill Signals (KS), which is known as a warning network
for the possible virus contagions and an advanced antivirus apparatus have been presented
by Kephart et al. [18].

The focus of fractional calculus is to generalize the differential form of the operators to
the non-integer form [19–21]. Recently, fractional calculus has a significant role in numerous
areas of mathematics, physics, finance, biology and neural networks [22–25]. On the other
hand, the derivative form of the integer can be stated by a fractional order (FO), which can be
calculated as a substantial operator tomodel the various real values withmemory. The FO and
integer forms of the derivatives are different with the use of nonlocal operator. To analyze the
FO derivative, it is considered for the starting to desired time (t � t0 to t � t1). Consequently,
the mathematical systems using the real values of the FO derivatives have attracted many
scientists of different areas [26]. Moreover, it is observed that the FO derivatives in biology
are implemented to model and analyze the rheological cell’s features [27]. Likewise, the FO
is applied to the electrical cell based on the biological organism [28]. In the mechanical field,
the FO derivatives show the complex performance of several physical systems [29, 30]. Few
related studies have been presented to solve the FO models is presented in the references
[31–40].

To consider the importance of the above-mentioned FO models, the authors are interested
in solving the FO computer virus propagation (CVP) system using the kill signals known
as SEIR-KS model. At the start, the SEIR-KS model was proposed with the use of classical
derivative [41]. The model was divided into five classes: Susceptible S(x), the state that is
not infected and virus free; Exposed E(x), infected individuals that makes the virus inactive;
Infected I(x), abruptly spreading virus and infected; Recovered R(x), gained immunization
and recovered from the virus; KS, i.e., Kill signals are represented byK(x) known as a special
class based on the anti-virus epidemic type.After getting theKS successfully, an infected class
may attempt to pass its successor, whereas a vulnerable class obtains insusceptibility as KS
comprises the cure. As the fourth-class dynamics may be dissociated with the supplementary
classes, R component gets lost and SEIR-KS system provides the integer order differential
system, which is given as [42]:
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

d
dx S(x) � bp − φS(x)K (x) − βS(x)E(x) − μS(x), S0 � l1,

d
dx E(x) � bq − χE(x) + βS(x)E(x) − μE(x) − αE(x), E0 � l2,

d
dx I (x) � αE(x) − γ I (x) − λI (x)K (x) − μI (x) − ε I (x), I0 � l3,

d
dx K (x) � λI (x)K (x) − μK (x) + γ I (x) + χE(x), K0 � l4.

(1)

where l1, l2, l3 and l4 indicate the initial conditions (ICs) of the above system. At the time x,
the SEIR-KS system parameters can be defined as: the exterior system classes are committed
to the system at b ratio and p represents a computer’s fraction in the system of susceptible,
whereas q shows the computers in the exposed network and q + p � 1. Due to the crashing
system or poor network, each computer linked to the system is separated from the system at
μ.

Subsequently, the exposed class has contagion, so each susceptible class can be infected,
whereas linking and corresponding with exposed individual at time “x” and deviations into
the exposed class with per unit probability time β E(x) as β is a constant. The changes of
exposed into the infected performedwith ratio α. Due to the implementation of the anti-virus,
an infected class become inoculation state with ε ratio. A KS is calculated through exposed
to infected class with ratios χ and γ . Each infected and susceptible class places again the
KS with λ and φ. KS gets slow with the ratio μ due to the drop-out or rebound around the
network.

In this study, the numerical solutions of the time fractional order SEIR-KS system have
been presented. The general form of the fractional order SEIR-KS system is given as [43]:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

DαS(x) � bp − φS(x)K (x) − βS(x)E(x) − μS(x), S0 � l1,

DαE(x) � bq − χE(x) + βS(x)E(x) − μE(x) − αE(x), E0 � l2,

Dα I (x) � αE(x) − γ I (x) − λI (x)K (x) − μI (x) − ε I (x), I0 � l3,

DαK (x) � λI (x)K (x) − μK (x) + γ I (x) + χE(x), K0 � l4,

(2)

where fractional order operator α is taken as in the sense of Caputo derivative to analyze the
dynamics of fractional order SEIR-KS system. Moreover, the value of α is taken between
0 and 1 to analysis the behavior of the nonlinear FO-CVP system using the kill signals as
SEIR-KS model to study the behavior for superfast transients as well as superslow evolution
which are difficult/seldom to observe by integer order counterpart models. Further details
of mathematical model and justification with the help of theoretical proves of the FO-CVP
model in (2) are given in the reported study [43].

The aim of this study is to solve the above nonlinear system using the Levenberg—
Marquardt backpropagation scheme (LMBS) together with the neural networks (NNs),
i.e., LMBS-NNs. The stochastic LMBS-NNs procedures have never implemented before
to present the numerical performances of the FO-SEIR-KS mathematical model. The statics
used in this study is 80%, 10% and 10% for training, testing and certification for solving the
FO-SEIR-KS nonlinear mathematical model. The numerical stochastic LMBS-NNs proce-
dures have the ability and competence to solve the complex, nonlinear, singular, economical,
functional, biological and fluid models [44–55]. These stochastic, computing, numerical
procedures motivated the authors to solve the FO derivatives of the SEIR-KS nonlinear
mathematical model. Few novel features for solving the FO-SEIR-KS mathematical model
using the LMBS-NNs are presented as:
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• A mathematical fractional order CVP model with KS is successfully solved by applying
the stochastic procedures.

• A design of the LMBS along with the artificial NNs is presented first time for solving the
mathematical fractional order CVP model with KS.

• Three different FO variations have been provided to solve the mathematical fractional
order CVP model with KS.

• The accuracy of the stochastic LMBS is achieved to check the comparison of the obtained
results with the Adams–Bashforth-Moulton numerical scheme.

• The obtained absolute error (AE) with the overlapping of 6 to 8 order authenticates the
exactness of the designed LMBS-NNs to solve the mathematical fractional order CVP
model with KS.

• The presentations of the regression, EHs, correlation, MSE and STs approve the consis-
tency and reliability of the designed LMBS-NNs to solve themathematical fractional order
CVP model with KS.

The remaining paper is proceeded as: The LMBS-NNs is provided in Sect. 2. The simu-
lations of the FO-SEIR-KS using the LMBS-NNs are given in Sect. 3. The conclusions are
reported in the final Sect.

2 Methodology: LMBS-NNs

This part of the paper shows the designed LMBS-NNs structure for the mathematical frac-
tional order CVP model with KS. The stochastic LMBS-NNs procedure is classified in two
phases. In the first step, essential performances using the stochastic LMBS-NNs are provided,
whereas the implementation steps are given to solve the FO-SEIR-KS mathematical system.
An appropriate optimization scheme based LMBS-NNs is illustrated in Fig. 1 that shows the
multi-layer neurons. Figure 2 represents a single neuron structure. The statics used in this
study is 80%, 10% and 10% for training, testing and certification for solving the FO-SEIR-KS
nonlinear mathematical model.

3 Numerical Performances of FO-SEIR-KSModel

In this portion, the numerical demonstrations of the FO-SEIR-KS mathematical model is
provided by applying the LMBS-NNs. The parameter values to solve FO-SEIR-KS mathe-
matical model are α � 0.4, p � 1, b � 0.005, φ � 0.01, β � 0.85, μ� 0.03, χ � 0.19,
γ � 0.06, λ � 0.12, ε � 0.52, l1 � 0.6, l2 � 0.4, l3 � 0.8 and l4 � 0.6. Three different
FO variations, i.e., α � 0.5, 0.7 and 0.9 have been presented in this research study. The com-
parison of the outcomes is performed for each dynamics of the FO-SEIR-KS by using 13
numbers of neurons. The statics used in this study is 80%, 10% and 10% for training, testing
and certification for solving the FO-SEIR-KS nonlinear mathematical model. The obtained
solutions by using 13 numbers of neurons to solve the FO-SEIR-KS model are drawn in
Fig. 3.

The graphic illustrations to solve the FO-SEIR-KSmodel using the LMBS-NNs are drawn
in Figs. 4, 5, 6, 7 and 8. The STs and MSE measures are illustrated to solve the FO-SEIR-
NNs in Fig. 4. The plots of the best curve, training, authentication and testing using the MSE
are shown in Fig. 4a–c. The STs best presentation values to solve the FO-SEIR-NNs are
demonstrated in Fig. 4d–f at epochs 102, 52 and 42. The best achieved values have been
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1. Methodology

Intelligent computing
Design of a multi-layer LMBS-NNs is 

provided to solve the mathema�cal frac�onal 
order CVP model with KS

Construction of a dataset using the relation of the 
reference solutions and the Adams-Bashforth-
Moulton scheme to solve the mathema�cal 
frac�onal order CVP model with KS.

Performance

 Neuron Model

2. Simulations of Results

EHS

Approximate values of 
the LMBS-NNs along 
with the correlation,
fitness, MSE, EHs,
STs and regression to 
solve the mathema�cal 
FO-CVP-KS

`

Result Comparison AE

The obtained 
LMBS-NNs 
results overlapped 
to the reference 
solutions to solve 
the mathema�cal 
frac�onal order 
computer virus 
propaga�on model 
with kill signals

Fig. 1 Workflow illustrations of the LMBS-NNs to solve the mathematical fractional order CVP model with
KS

observed at 1.7784 × 10–09, 1.1833 × 10–08 and 1.6311 × 10–10. The gradient measures
through the LMBS-NNs for the FO-SEIR-NNs mathematical model are observed 9.716 ×
10–08, 9.575× 10–08 and 9.5447× 10–08. The obtained performances represent the precision
and convergence of the LMBS-NNs for solving the FO-SEIR-KS mathematical model. The
fitting curve plots have been exemplified in Fig. 5 for the FO-SEIR-KS mathematical model
using the proposed LMBNNs. These values have been drawn using the comparison presenta-
tions of the obtained results through LMBS-NNs. Figure 5d–f is illustrated based on the EHs
values, which are calculated 2.79 × 10–05, 1.96 × 10–06 and 2.16 × 10–07 for case 1, 2 and
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Fig. 2 Single neuron structure

Fig. 3 Construction of the LMBS-NNs for the FO-SEIR-KS model using 13 numbers of neurons

3. The regression performances are illustrated in Figs. 6. These regression measures validate
the performances of the perfect model, which are calculated 1. The verification, training and
testing values indicate the precision of the LMBS-NNs for the FO-SEIR-NNs. Moreover,
the MSE convergence through the complexity, training, epochs, confirmation, testing and
backpropagation is provided in Table 1 for the FO-SEIR-KS mathematical model.

The AE illustrations are provided in Figs. 7 and 8, which have been calculated using
the comparisons of the FO-HBV-DIS mathematical model. The numerical measures are
illustrated for each category of the FO-SEIR-KS mathematical model using the designed
LMBS-NNs. The numerical values are shown in Figs. 7, that represents the overlapping of
the designed and the reference outcomes. These overlapping signifies the correctness and
accuracy of the proposed LMBS-NNs for nonlinear FO-SEIR-KS mathematical model. The
AE for each class of the FO-SEIR-KS mathematical model is illustrated in Fig. 8. The AE
performances for the susceptible S(x) category lie 10–04 to 10–05, 10–04 to 10–06 and 10–05

to 10–06 for case 1, 2 and 3 to solve the FO-SEIR-KS nonlinear mathematical model. The
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Fig. 4 MSE and STs performances to solve the FO-SEIR-KS mathematical model

AE values for the exposed E(x) lie 10–04 to 10–05, 10–04 to 10–06 and 10–05 to 10–07 for
case 1, 2 and 3 to solve the FO-SEIR-KS nonlinear mathematical model. The AE values for
the infected I (x) lie 10–04 to 10–05, 10–03 to 10–05 and 10–04 to 10–06 for case 1, 2 and 3 to
solve the FO-SEIR-KS nonlinear mathematical model. The values of AE for the KS category
K (x) lie 10–04 to 10–06, 10–04 to 10–05 and 10–05 to 10–06 cases 1 to 3 for the FO-SEIR-
KS nonlinear mathematical model. The AE values enhance the exactness of the stochastic
approach for the FO-SEIR-KS nonlinear mathematical model.

4 Conclusions

In this study, an investigation is presented to solve a fractional order CVP mathematical
model with KS using the stochastic procedures of the LMBS-NNs. The fractional order
SEIR-KS mathematical nonlinear model is executed to solve three different variants of the
fractional order. The statics used in this study are 80%, 10% and 10% for training, testing and
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Fig. 5 Valuations and EHs to solve the FO-SEIR-KS mathematical system

certification for solving the FO-SEIR-KS nonlinear mathematical model. Thirteen numbers
of neurons have been applied to solve the CVP mathematical model with KS, i.e., FO-SEIR-
KS model. The numerical investigations of the FO-SEIR-KS model has been presented
through the numerical stochastic procedures of the LMBS-NNs, whereas the comparative
presentations have been available based on the Adams–Bashforth–Moulton. The numerical
procedures of the FO-SEIR-KS system has been presented using the LMBS-NNs in order
to reduce the MSE. To validate the reliability, capability and aptitude of the LMBS-NNs,
the numerical results have been provided by using the STs, correlation, Ehs, regression and
MSE. Thematching of the obtained and reference result performances indicates the precision
and accurateness of the proposed stochastic approach and the values of the AE represents
the perfection of the CVP mathematical model with KS.
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Fig. 6 Regression performances to solve the FO-SEIR-KS mathematical model
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Fig. 7 Comparison of the result to solve the FO-SEIR-KS mathematical model
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Fig. 8 AE to solve the FO-SEIR-KS mathematical model
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In future, the design of the LMB-NNs procedures and their modified variants can be
implemented to find the numerical solutions and analysis of the nonlinearmodels and systems
arising in different application of utmost importance [56–63].
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