

KATA PENGANTAR

Bismillahirrahmanirrahim

Segala puja dan puji syukur penulis sampaikan Kehadirat Allah SWT atas segala limpahan rahmat, karunia, dan hidayahNya, sehingga selesainya penelitian dan penyusunan bahan ajar media cetak berbentuk buku panduan ini. Sholawat dan salam penulis sampaikan kepada Nabi Muham mad SAW yang telah membawa manusia kepada kehidupan yang penuh rahmat dan maghfirah dari Alloh SWT, semoga kita mendapat safaatnya di Yaumil Akhir Amin.

Buku panduan ini merupakan pengembangan dari buku teks SPSS versi terbaru yaitu versi 25 yang baru dirilis akhir tahun 2018 untuk pengolahan data statistik terapan dengan menggunakan teknologi informasi yang lebih dikenal *software* statistika, yakni "Panduan Praktis Teknik Analisis Data Berbasis Teknologi Informasi dengan SPSS", untuk Peneliti Pemula, Dilengkapi Contoh Kasus dan Langkah-Langkah Penyelesaiannya, Disesuaikan dengan Silabus Mata Kuliah Statistik Pendidikan/Analisis Data Terapan. Agar memudahkan pembaca memahami isi buku panduan ini secara sistematis, materi dibagi menjadi tiga bagian besar:

- BAB I: PENDAHULUAN: menjelaskan konsep penelitian dan statistik, mengunakan SPSS disertai contoh sederhana kasus penelitian dan langkahlangkah sistematis penyelesaian dengan *software* SPSS.
- Bab II: PEMBAHASAN: menjelaskan pembagian statistik terapan beserta konsepnya yakni: Statistik Deskriptif dan Statistik Inferensial (Parametrik dan Non Parametrik), serta menjelaskan penggunaan program SPSS untuk mengolah data dengan berbagai prosedur statistik. Dilengkapi cara memberikan makna angka dari hasil *out put* analisis.
- BAB III. PENUTUP

Buku panduan ini ditujukan kepada khususnya mahasiswa Fakultas Tarbiyah IAIN Curup sebagai *handbook* dalam pembelajaran praktikum mata kuliah statistik pendidikan dan analisis data terapan dan mahasiswa yang sedang berkutat dengan skripsinya. Ditujukan juga kepada para pengguna statistik yang tidak ingin direpotkan dengan perhitungan manual statistik yang rumit dan melelahkan, namun tetap ingin memperoleh *out put* statistik yang akurat dan dapat dimengerti. Para dosen sebgai modul ini dapat digunakan sebagai pendamping pembelajaran, para mahasiswa, sebagai peneliti pemula dan pengguna awam misalnya para guru yang terlibat dalam proses pengolahan data statistik merupakan kalangan yang tepat untuk memiliki dan menggunakan buku panduan ini.

Ucapan terimakasih ditujukan kepada:

1. Rektor IAIN Curup: Bapak Dr. Rahmad Hidayat, M.Ag, M.Pd yang telah memberikan izin dan mendanai seluruh penelitian yang menghasilkan buku panduan ini yang dituangkan dalam Daftar

Isian Pelaksanaan Anggaran (DIPA) Institut Agama Islam Negeri (IAIN) Curup Tahun Anggaran 2019.

- 2. Tim Reviewer: Bapak. Nurus Shalihin, Ph.D dan Dr. Idi Warsah, M.Pd yang telah mereview banyak memberikan arahan, saran, serta masukan yang sangat berarti sehingga selesainya bahan ajar buku panduan dalam penelitian ini dengan baik.
- 3. Kepala Lembaga Penelitian dan Pengabdian kepada Masyarakat (LPPM) IAIN Curup
- 4. Kepala Pusat Penelitian dan Pengabdian Masyarakat (P3M) IAIN Curup.
- 5. Dekan Fakultas Tarbiyah IAIN Curup.
- 6. Staf Program Studi, segenap seluruh dosen, dan mahasiswa Tadris Matematika IAIN Curup.
- 7. Bapak/Ibu dosen sebagai tim ahli validasi produk bahan ajar cetak buku panduan yang dikembangkan pada penelitian ini.
- 8. Mahasiswa yang terlibat dalam tim penyusunan buku panduan ini
- 9. Rekan dosen yang banyak menyumbangkan pemikirannya terutama bidang keilmuannya demi kesempurnaan modul sebagai bahan ajar ini
- 10. Ucapan terimaksih juga kepada para pembaca dan pengguna buku panduan ini, penulis harapkan kritik serta

Semoga amal kebaikan mereka dapat diterima serta mendapat balasan dari Alloh SWT. Semoga dicatat sebagai amal yang shaleh dan bermanfaat, Amin. Besar harapan penulis, semoga buku panduan ini dapat bermanfaat bagi para mahasiswa sebagai pengguna statistik pada umumnya dan penulis pada khususnya, Amin.

Wassalamualaikum Warahmatullahi Wabarokatuh

Curup, 10 Nopember 2019 Penulis

Wiwin Arbaini W, M.Pd NIP. 19721004 200312 2 003

DAFTAR ISI

KATAPENGANTAR		iii
DAFTAR ISI		v
BAB I PENDAHUL	UAN	
Bagian 1. Peneli	tian dan Statistik	2
A. Pe	nelitian	2
B. Sta	atistik	6
C. Ele	emen Dari Statistik	12
D. Tij	pe Data Statistik	14
E. Pe	nggolongan Data Statistik	18
Bagian 2. Penge	lompokan Data	19
Bagan 3. Mengg	gunakan SPSS	25
A. P	endahuluan	25
B. II	nput Variabel Data Kuantitatif	25
C. M	Ienu Analyze	29
BAB II STATISTIK	TERAPAN	31
Bagian 1. Statist	ik Deskriptif	31
A. P	endahuluan	31
B. F	requencies	32
C. D	Descriptive	38
D. E	Explore	39
E. C	Crosstab	45
Bagian 2. Statist	ik Non Inferensial Non-Parametrik	
A. U	Jji Satu Sampel (Uji Runs)	51
B. U	Jji Satu Sampel (Uji Binomial)	54
C. U	Jji Dua Sampel yang Saling Berhubungan	
(Uji Tanda (Sign))	57
D. U	Jji Dua Sampel yang Saling Berhubungan	
()	Uji Wilcoxon)	61
E. U	Jji Dua Sampel yang Tidak Saling Berhubungan	
()	(Uji MANN-WHITNEY)	67
F. U	Jji Tiga atau Lebih Sampel yang Saling Berhubungan	

(Uji Friedman)	71
G. Uji Tiga Atau Lebih Sampel Yang Tidak Berhubungan	
(Uji Kruskal Wallis)	75
Bagian 3. Statistik Inferensial Parametrik (Uji Perbedaan)	
A. Independen Sampel t test	
(Uji t Untuk Dua Sampel Independen/Bebas)	81
B. Paired Sampel t test	
(Uji t untuk dua sampel yang berpasangan)	83
C. One Sampel t test (Uji t untuk satu sampel)	87
D. Uji Dengan Menggunakan Penggunaan Cut Point	
(Titik Potong)	89
E. Uji ANOVA	92
Bagian 4. KORELASI	
A. Uji Korelasi Koefisien Cramer (Data Nominal)	109
B. Uji Korelasi Kendali (Datta Ordinal)	114
C. Uji Korelasi Pearson (Data Rasio)	119
Bagian 5. Analisis Validitas dan Realibilitas Suatu Kuisioner	
A. Validitas	122
B. Reliabilitas	122
Bagian 6. Uji Normalitas Untuk Regresi linier	
A. Mengolah Data	129
B. Menyimpulkan Hasil Out Put	131
C. Hasil Out Put	131
Bagian 7. Mengatasi Data Yang Tidak Normal Untuk Regresi linier	
A. Mengatasi Data Tidak Normal	
Untuk Regresi Dengan Transformasi Data	132
B. Mengatasi Data Tidak Normal Untuk Regresi Dengan	
Mengeluarkan Outlier (Data Yang Tidak Normal)	139
Bagian 8. REGRESI	
A. Regresi Linier Sederhana	143
B. Regresi Linier Berganda	147
BAB III PENUTUP	153
DAFTAR PUSTAKA	154
TENTANG PENULIS	155

BAB I PENDAHULUAN

ΤΥθΥΑΝ ΠΕΜΒΕΛΑθΑΡΑΝ

Setelah menyelesaikan Bab ini, anda diharapkan akan dapat:

- 1. Melakukan tahapan-tahapan penelitian dengan menggunakan pendekatan kuantitatif
- 2. Melakukan pengujian statistik deskriptif dan statistik inferensial untuk pengolahan data
- 3. Mengetahui serta menentukan besarnya elemen statistik ukuran sampel
- 4. Mengetahui tipe data statistik
- 5. Melakukan langkah awal mengoperasikan SPSS dengan contoh kasus data penelitian
- 6. Menelompokkan Data
- 7. Menggunakan Program SPSS

Penelitian dan Statistik

A. Penelitian

Penelitian adalah cara ilmiah untuk mendapatkan data dan mengolahnya untuk kegunaan tertentu, serta merupakan salah satu pondasi untuk mengembangkan ilmu pengetahuan. Susunan penelitian terdiri dari 5 bab dimulai dari judul penelitian, pendahuluan, kajian teori, metodolgi penelitian, analisis data, kesimpulan. Isi dari 5 bab tersebut adalah sebagai berikut :

JUDUL PENELITIAN

Judul penelitian merupakan gambaran keseluruhan dari penelitian :

Contoh judul penelitian sebagai berikut :

Analisis Pengaruh IQ terhadap nilai studi kasus mahasiswa Tadris Matematika IAIN Curup

BAB 1 PENDAHULUAN

Pendahuluan meliputi :

a. Latar Belakang

Latar belakang berisi tentang pernyataan yang menyangkut topic atau judul yang diambil

b. Rumusan Masalah

Rumusan masalah merupakan pertanyaan yang timbul berdasarkan judul maupun latar belakang yang ada.

Contoh rumusan masalah sebagai berikut :

Apakah terdapat pengaruh antara IQ terhadap nilai studi kasus mahasiswa Tadris Matematika IAIN Curup

c. Batasan Masalah

Berisi batasan agar penelitian tidak melebar

d. Tujuan Penelitian

Berisi tujuan yang diperoleh dari penelitian

e. Manfaat Penelitian

Berisi manfaat yang diperoleh dari penelitian

Contoh manfaat yang diperoleh sebagai berikut :

- Bagi IAIN hasil penelitian ini dapat memberikan informasi dalam upaya peningkatan nilai mahasiswa.
- Bagi peneliti merupakan pengalaman dalam menerapkan ilmu yang diterima

BAB II TINJAUAN PUSTAKA

Tinjauan pustaka meliputi:

a. Landasan Teori

Membahas teori – teori berdasarkan variable-variable yang berkaitan dengan penelitian

b. Keaslian Penelitian

Berisi Penelitian-Penelitian terdahulu dengan judul dan variable yang mendukung penelitian yang sedang dilakukan oleh peneliti.

c. Hipotesis

Hipotesis merupakan dugaan jawaban yang diajukan berdasarkan rumusan masalah. Dugaan jawaban tersebut ada 2 yaitu Ho dan Ha. Ho bertujuan memberikan usulan dugaan kemungkinan tidak adanya perbedaan antara perkiraan penelitian dengan keadaan yang sesungguhnya yang diteliti. Ha bertujuan memberikan usulan dugaan adanya perbedaan perkiraan dengan keadaan sesungguhnya yang diteliti.

Contoh kemungkinan jawaban dari rumusan masalah ada 2 sebagai berikut :

- Ho: Tidak terdapat pengaruh yang positif dan signifikan antara IQ terhadap nilai studi kasus mahasiswa Tadris Matematika IAIN Curup
- Ha: Terdapat pengaruh antara IQ terhadap nilai studi kasus mahasiswa Tadris Matematika IAIN Curup

Dugaan sementara peneliti berdasarkan teori maupun penelitian sebelumnya yang disebut hipotesis

BAB III METODOLOGI PENELITIAN

Metodologi penelitian meliputi

a. Pengumpulan data

Pengumpulan data merupakan data-data yang harus dikumpulkan menyangkut dengan topic penelitian

Contoh populasi dari penelitian adalah semua mahasiswa mahasiswa Tadris Matematika IAIN Curup, sampelnya adalah mahasiswa mahasiswa Tadris Matematika IAIN Curup semester V

b. Definisi operasional

Definisi operasional mendefinisikan variable penelitian serta cara pengukurannya :

- b.1. Variabel IQ (X) adalah kecerdasan mahasiswa diukur dengan melakukan tes IQ masing-masing sampel
- b.2. Variable nilai (Y) adalah nilai total statistic untuk 1 semester mahasiswa
- c. Pengujian

Pengujian merupakan metode yang digunakan untuk mengolah data berdasarkan rumusan masalah yang diajukan dengan bantuan statistic untuk mengolah datanya. Contoh pengujian sebagai berikut :

Pengujian yang digunakan adalah

- c.1. Pengujian deskriptif untuk mengetahui gambaran masing-masing variable yaitu variable IQ dan Variabel nilai. Dicantumkan rumus pengujian deskriptif misalnya mean, SD
- c.2. Regresi linier sederhana (melihat pengaruh antara variable satu terhadap variable lainnya). Dicantumkan rumus regresi linier sederhana.

BAB IV ANALISI DATA

Setelah dilakukan surve dilapangan akan diperoleh data, data-data tersebut akan diolah dengan menggunakan rumus-rumus statistic untuk menjawab rumusan masalah penelitian.

a. Menganalisis Data

Analisis data merupakan menginterpretasikan hasil pengolahan data.

Contoh :

• Hasil pengujian deskriptif seperti dibawah ini :

Descriptive Statistics

	N	Mean
Nilai	10	71.50
IQ	10	115.50
Valid N (listwise)	10	

Rata-rata Nilai mahasiswa Tadris Matematika IAIN Curup 71,5

Rata-rata IQ mahasiswa Tadris Matematika IAIN Curup 115,5

• Hasil pengujian regresi sederhana seperti dibawah ini :

Model	Unstand Coeff	dardized icients	standardized Coefficients		
	В	Std.	Beta	Т	Sig.
		Error			
1 (Constant)	-	14.727		-3.765	.006
IQ	55.445	.126	.951	8.699	.000
	1.099				

Coefficients

Hasil olah data menggunakan alat pengukuran regresi linier sederhana maka akan diinterpretasikan sebagai berikut :

Apakah terdapat pengaruh antara IQ terhadap nilai studi kasus mahasiswa Tadris Matematika IAIN Curup ?

- Ho: Tidak terdapat pengaruh yang positif dan signifikan antara IQ terhadap nilai studi kasus mahasiswa Tadris Matematika IAIN Curup
- Ha: Terdapat pengaruh antara IQ terhadap nilai studi kasus mahasiswa Tadris Matematika IAIN Curup

Kriteria pengujian sig

Jika sig > 0,05 maka Ho diterima

Jika sig < 0.05 maka Ho ditolak

Nilai sig sebesar 0,000 < 0,05 jadi Ho ditolak dan Ha diterima artinya terdapat pengaruh yang positif dan signifikan antara IQ terhadap nilai mahasiswa nilai studi kasus mahasiswa Tadris Matematika IAIN Curup.

Dengan persamaan regresi sebagai berikut :

Y=a+bX

Dimana X = IQ, dan Y = nilai

Y = -55,445+1,099X artinya terdapat pengaruh antara IQ terhadap nilai studi kasus mahasiswa Tadris Matematika IAIN Curup, pengaruhnya jika IQ(x) naik satu maka nilai akan naik juga sebesar 1,099.

BAB V KESIMPULAN DAN SARAN

a. Kesimpulan

Kesimpulan merupakan penyimpulan secara ringkas dari hasil analisis penelitian yang diajukan dalam rumusan masalah.

Contoh kesimpulan sebagai berikut :

terdapat pengaruh antara IQ terhadap nilai studi kasus mahasiswa Tadris Matematika IAIN Curup, pengaruhnya jika IQ(x) naik satu maka nilai akan naik juga sebesar 1,099.

b. Saran

Saran merupakan masukan yang diberikan peneliti berdasarkan hasil kesimpulan yang diperoleh. Saran yang diberikan dapat ditujukan untuk penelitian selanjutnya mau pun ditujukan untuk perusahaan yang diteliti.

Statistik digunakan untuk mengolah data penelitian. Data yang diperoleh dari sampel yang sudah siap diolah menggnakan statistic untuk memperoleh kesimpulan penelitian.

B. Statistik

Pengujian statistic untuk pengolahan data yang digunakan dalam penelitian dibagi menjadi dua bagian yaitu :

a. Statistik Deskriptif

Statistik Deskriptif berusaha untuk menggambarkan berbagai karakteristik data yang berasal dari suatu sampel. Statistik Deskriptif *seperti mean, median, modus, presentil, desil, quartile, dalam bentuk analisis angka maupun gambar/diagram.* Contoh :

Carilah Statistik Deskriptif (mean, median, modus, quartile, varians, standar deviasi) dari nilai statistic nilai belajar statistik mahasiswa semester IV sebagai berikut :

No	Nama	Nilai
1	Silvia	50
2	Dilla	50
3	Rasti	100
4	Witri	80
5	Bunga	95
6	Tutik	70
7	Feby	90
8	Dian	60
9	Deni	70
10	Aji	50

Jawab :

Analisis angka

Mean adalah alat pengukur rata-rata yang paling popular untuk mengetahui karakteristik dari sekelompok data dengan membagi jumlah dari keseluruhan isi data dengan jumlah datanya.

= 71,5 (menggambarkan nilai rata-rata statistic mahasiswa semester IV)

Median adalah membagi data menjadi dua bagian sama besar, dan kemudian menghitung nilai data yang membagi data menjadi dua bagian tersebut.

= 50,50,50,60,**70,70**,80,90,95,100

$$=\frac{70+70}{2}$$

= 70 (menggambarkan nilai tengah statistic mahasiswa semester IV)

Modus adalah menghitung jumlah data yang paling sering munculdalam sekelompok data

= 50 (menggambarkan nilai statistic mahasiswa semester IV yang paling sering muncul)

Quartile adalah membagi data menjadi empat bagian yang sama besar. Besarnya data disini adalah jumlah data, sehingga jika ada sepuluh data, maka kuartil membagi setiap 10/4 atau 2,5 data, maka kuartil ingin mengetahui besar data setiap 2,5 buah data. Dengan demikian pada saat setiap data berapapun jumlahnya, jika akan dibagi menjadi kuartil akan selalu ada 4 buah kuartil, yaitu Q1,Q2,Q3,Q4.

Deretan data setelah diurutkan dari nilai terkecil ke ilai terbesar sebagia berikut :

Data ke	Nilai
1	50
2	50
3	50
4	60
5	70
6	70
7	80
8	90
9	95
10	100

Posisi Q1 = $\frac{10+1}{4}$ = 2,75

Dengan demikian data Q1 terletak pada posisi ke 2,75 dari 10 data tersebut atau diantara data ke2 dan data ke 3. Karena nilai data ke 2 dan ke 3 adalah sama yaitu 50, dengan demikian Q1 adalah 50 . hal ini berarti 25% nilai statistik mahasiswa semester IV adalah 50.

Posisi Q2 = $\frac{2(10+1)}{4}$ = 5,5

⁵⁰⁺⁵⁰⁺¹⁰⁰⁺⁸⁰⁺⁹⁵⁺⁷⁰⁺⁹⁰⁺⁶⁰⁺⁷⁰⁺⁵⁰ 10

Dengan demikian data Q2 terletak pada posisi ke 5,5 dari 10 data terletakatau rata-rata dari data ke 5 dan data ke 6.

Q2 adalah $\frac{70+70}{2} = 70$

Hal ini berarti 50% nilai statistik mahasiswa semester IV mendapat nilai ujian 70

Posisi Q3 =
$$\frac{3(10+1)}{4}$$
 = 8,25

Dengan demikian data Q3 terletak pada posisi ke 8,25 dari 10 data terletak data ke 8 dan data ke 9. Karena nilai data ke 8 dan 9 tidak sama maka akan dilakukan interpolasi. Data untuk interpolasi:

Data ke	Nilai
8	90
8,25	?
9	95

Proses interpolasi :

Q3 = 90 +
$$\left[\frac{8,25-8}{9-8} \times (95-90)\right]$$

= 91,25

Hal ini berarti 70% nilai statistik mahasiswa semester IV mendapat nilai ujian 91,25 kebawah

Keterangan: Q0 adalah data terkecilyaitu 50 dan Q4 adalah data terbesar yaitu 100.

Varians sampel adalah adanya bias data dari rata-rata sampelnya

Data ke	Nilai
1	50
2	50
3	50
4	60
5	70
6	70
7	80
8	90
9	95
10	100
Rata-rata	71,5

 $[\]frac{(50-71,5)^2 + (50-71,5)^2 + (50-71,5)^2 + (60-71,5)^2 + (70-71,5)^2 + (70-71,5)^2 + (80-71,5)^2 + (90-71,5)^2 + (95-71,5)^2 + (100-71,5)^$

=366,94

Semakin kecil varians sebuah data, semakin tidak bervariasi data tersebut. Sebaliknya, semakin besar varians sebuah data, semakin bervariasi data tersebut.

Standar Deviasi adalah akar dari varians menunjukkan simpangan baku = $\sqrt{366,94}$ = 19,16

Analisis gambar/diagram

Diagram Pie

b. Statistik inferensial/induktif

Statistik inferensial berusaha membuat berbagai inferensi terhadap sekumpulan data yang berasal dari suatu sampel. Tindakan inferensi tersebut seperti *melakukan perkiraan, peramalan, pengambilan keputusan dari dua variable atau lebih.* Contoh:

Dibawah ini terdapat data nilai statistic dan IQ masing-masing mahasiswa semester IV sebagai berikut :

No	Nama	Nilai	IQ
1	Silvia	50	100
2	Dilla	50	100
3	Rasti	100	150
4	Witri	80	120
5	Bunga	95	130
6	Tutik	70	115
7	Feby	90	125
8	Dian	60	100
9	Deni	70	115
10	Aji	50	100

Anda diminta mengambil keputusan apakah IQ mempunyai pengaruh terhadap nilai statistic mahasiswa semester IV

Jawab:

Langkahnya :

Hipotesis (dugaan jawaban dari pertanyaan yang diajukan) adalah

Ho: Tidak terdapat pengaruh antara IQ terhadap nilai statistic mahasiswa

Ha : Terdapat pengaruh antara IQ terhadap nilai statistic mahasiswa semester IV

Mencari persamaan regresi dan t hitung

X	Y	ХҮ	X^2	Y^2
50	100	5000	2500	10000
50	100	5000	2500	10000
100	150	15000	10000	22500
80	120	9600	6400	14400
95	130	12350	9025	16900
70	115	8050	4900	13225
90	125	11250	8100	15625
60	100	6000	3600	10000
70	115	8050	4900	13225
50	100	5000	2500	10000
∑=715	∑=115 5	∑=85300	∑=54425	∑=135875

$$b = \frac{n\Sigma(XY) - (\Sigma X)(\Sigma Y)}{n(\Sigma X^2) - (\Sigma X)^2}$$

= $\frac{10(85300 - (715)(1155)}{10(54425) - (511225)}$
= 0,823
$$a = \frac{\Sigma Y - b(\Sigma X)}{n}$$

= $\frac{(1155) - 0,823(715)}{10}$
= 56,66

Jadi persamaan regresi sederhana sebagai berikut :

$$Y = 56,66+0,823X+e$$

$$Se = \sqrt{\frac{\sum Y^2 - a \sum Y - b \sum XY}{n-2}}$$

$$= \sqrt{\frac{(135875) - 56,66(1155) - 0,823(85300)}{10-2}}$$

$$= 5,37$$

$$Sb = \frac{se}{\sqrt{\sum X^2 - \frac{(\sum X)^2}{10}}}$$

$$= \frac{se}{\sqrt{\sum 425 - \frac{(715)^2}{10}}}$$

$$= 0,0934$$

$$Thitung = \frac{b}{sb}$$

$$= \frac{0,823}{0,0934} = 8,7$$

Mengambil keputusan

Membandingkan antara thitung dengan ttabel

 t_{hitung} dapat dilihat dengan menggunakan table t dapat dilihat dibelakang (9;0,025) = 2.262

nilai 10 berasal dari n-1, n merupakan jumlah sampel

nilai 0,025 berasal dari tingkat kesalahan penelitian 5% (0,05) karena memakai dua sisi jadi 0,05/2

 $t_{hitung} = 8,7$ berada pada pernyataan Ho ditolak dan pernyataan Ha diterima maka pengambilan keputusannya adalah **terdapat pengaruh antara IQ terhadap nilai statistic mahasiswa semester IV.**

Statistic inferensial dapat dikelompokkan menjadi 2 yaitu :

1. Statistic parametric

Statistic parametric digunakan dengan syarat data sebagai sampel harus berdistribusi normal (diuji dengan uji normalitas terlebih dahulu), jadi sebelum menentukan pengujian yang akan dipakai maka dilakukan pengujian normalitas terlebih dahulu. Pengujian yang dipakai dalamStatistic parametric adalah:

1.1.Uji perbedaan

Disini akan diuji apakah sebuah sampel mempunyai perbedaan nyata dengan sampel yang lain. Uji yang digunakan adalah independent sample t test, paired sample t test, one sample t test

1.2.Uji asosiasi

Disini akan diuji apakah dua variable yang ada mempunyai hubungan, pengaruh. Uji yang digunakan adalah korelasi, chisquare, regresi.

2. Statistic nonparametric

Statistic nonparametric ini digunakan pada kondisi-kondisi penelitian tertentu. Kondisi yang sering dijumpai antara lain data pada sampel tidak berdistibusi normal, jumlah sampel yang kecil (kurangdari 30), cenderung lebih sederhana sehingga kesimpulannya kadang meragukan. Yang termasuk uji nonparametric adalah uji sign, uji mann whitney, uji friedman, uji kruskal wallis H akan dibahas lebih lanjut pada bab selanjutnya.

Statistik Inferensial

Jika data yang diperoleh dari penelitian berdistribusi normal maka uji infarensi yang digunakan adalah uji statistic parametric, jika data tidak berdistribusi normal maka digunakan uji statistic nonparametric.

C. Elemen dari statistic

Pengolahan statistic memerlukan data yang akan digunakan sebagai bahan penelitian, sebelum lebih jauh membahas mengenai metode-metode statistic dengan menggunakan SPSS ada beberapa hal yang penting diketahui berkaitan dengan elemen statistic yaitu:

1. Populasi

Populasi merajuk pada sekumpulan orang atau objek yang memiliki kesamaan dalam suatu riset khusus. Populasi yang akan diteliti harus didefinisikan dengan jelas sebelum penelitian dilakukan

2. Sampel

Sampel merupakan bagian atau sejumlah cuplikan tertentu yang dapat diambil dari suatu populasi dan diteliti secara rinci. Atau dapat dikatakan sampel adalah sebuah miniature dari populasi. Meskipun demikian sampel tidak selalu dapat menggambarkan populasi secara sempurna. Selalu saja ada distorsi, walaupun sampel tersebut telah diupayakan untuk ditentukan atau dapat diambil sesistimatis mungkin. Untuk meminimalisasikan distorsi, maka sampel harus benar-benar mewakili populasi aslinya.

Menentukan ukuran sampel

Jumlah anggota sampel sering dinyatakan dengan ukuran sampel. Jumlah sampel yang diharapkan 100% mewakili populasi adalah jumlah anggota populasi itu sendiri. Untuk penelitian jumlah populasi yang terlalu banyak akan kita ambil untuk djadikan sampel dengan harapan jumlah sampel yang kita ambil dapat mewakili (representatif) populasi yang ada. Untuk menentukan ukuran sampel menggunakan

2.1.Rumus slovin adalah sebagai berikut:

$$n = \frac{N}{1 + (N \times e^2)}$$

dimana:

n= ukuran sampel

N= populasi

e= presetasi kelonggaran ketidakterikatan karena kesalahan pengambilan sampel yang masih diinginkan.

Contoh

Populasi responden adalah seluruh pegawai bank artha prima media Yogyakarta berjumlah 100 orang, maka sampel yang kita ambil sebagai penelitian jika menggunakan rumus sovin dengan tingkat kepercayaan 95%, dan tingkat rerror 5% adalah

$$n = \frac{100}{1 + (100 \times 0.05^2)}$$

= 80 orang

Jadi sampel penelitian untuk populasi 100 orang dengan tingkat kepercayaan 95% adalah 80 orang.

2.2.Table penentuan sampel yang dikembangkan oleh isac dan Michael adalah sebagai berikut:

Ν	S		Ν		S		
	1%	5%	10%		1%	5%	10%
10	10	10	10	280	197	155	138
15	15	14	14	290	202	158	140
20	19	19	19	300	207	161	143
25	24	23	23	320	216	167	147
30	29	28	27	340	225	172	151
35	33	32	31	360	234	177	155
40	38	36	35	380	242	182	158
45	42	40	39	400	250	186	162
50	47	44	42	420	257	191	165
55	51	48	46	440	265	195	168
60	55	51	49	460	272	198	171
65	59	55	53	480	279	202	173
70	63	58	56	500	285	205	176
75	67	62	59	550	301	213	182
80	71	65	62	600	315	221	187
85	75	68	65	650	329	227	191
90	79	72	68	700	341	233	195
95	83	75	71	750	352	238	199
100	87	78	73	800	363	243	202
110	94	84	78	850	373	247	205
120	102	89	83	900	382	251	208
130	109	95	88	950	391	255	211
140	116	100	92	1000	399	258	213
150	122	105	97	1100	414	265	217
160	129	110	101	1200	427	270	221
170	135	114	105	1300	440	275	224
180	142	119	108	1400	450	279	227
190	148	123	112	1500	460	283	229
	1						

TABEL PENENTUAN JUMLAH SAMPEL DAN POPULASI TERTENTU DENGAN TARAF KESALAHAN 1%, 5%, DAN 10%

D. Tipe data statistic

Tipe data statistic ada 2 :

a. Data kualitatif

Data kualitatif secara sederhana dapat disebut data hasil kategori (pemberian kode) untuk isi data yang berupa kata atau dapat didefinisikan sebagai data bukan angka tetapi diangkakan contoh jenis kelamin, status dan lain sebagainya. Data kualitatif mempunyai ciri tidak dapat dilakukan operasi matematika, seperti penambahan, pengurangan, perkalian, dan pembagian. Data kualitatif diambil dari penyebaran kuisioner pada responden sehingga harus dilakukan pengujian reliabilitas dan validitas. Data kualitatif dapat dibagi menjadi 2 :

a.1. Data Nominal

Data bertipe nominal adalah data yang paling rendah dalam level pengkuran data. Data dalam bentuk kategori tetapi tidak ada tingkatannya. Contoh jenis kelamin ada 2 yaitu wanita dan pria maka dikategorikan dalam bentuk angka misalnya 1 adalah wanita dan 2 adalah pria.

a.2. Data Ordinal

Data ordinal juga data kualitatif namun dengan level yang lebih tinggi dari pada data nominal. Jika dalam data nominal semua data kategori dianggap setara, maka pada data ordinal ada tingkatannya. Contoh tanggapan dari responden jika 1 adalah sangat tidak setuju, 2 adalah tidak setuju,3 adalah netral, 4 adalah setuju, dan 5 adalah sangat setuju.

Jenis-jenis pertanyaan dalam kuisioner

Jenis	Keterangan	Contoh
Pertanyaan Tetutup	Pertanyaan dengan dua	"dalam mempersiapkan perjalananini,
Dikotomi	kemungkinan jawaban	apakah saudara menelpon saya di neyairlines secara pribadi?" Ya () Tidak ()

Jenis	Keterangan	Contoh
Pilihan berganda	Pertanyaan dengan tiga atau	"dengan siapa saudara berpergian kali
	lebih kemungkinan jawaban	ini?"
		Sendiri saja ()
		Anak-anak ()
		Istri/suami ()
		Rekan bisnis ()
		Istri/suami dan anak ()
		Kelompok tur yang terorganisasi ()

Skala likert	Pertanyaan yang menunjukkan tingkat kesetujuan atau kesetujuan responden	"Maskapai penerbangan kecil biasanya memberikan pelayanan yang lebih baik disbanding maskapai penerbangan besar" STS TS N S SS 1() 2() 3() 4() 5()
Perbedaan sematik	Skala yang menghubungkan dua kata yang saling berlawanan, dimana responden memilih sebuah titik yang menunjukkan pendapatnya"	Sydney Airlines BesarKecil ModernKuno ProfesionalTidak
Skala Kepentingan	Suatu skala yang menunjukkan tingkat kepentingan sejumlah atribut	"bagi saya, pelayanan makanan dalam penerbangan adalah" SP P AP TP STP 1_ 2_ 3_ 4_ 5_
Skala Ranking	Skala yang menunjukkan tingkat kepentingan sejumlah atribut dari 'sangat jelek' hingga 'sangat baik'	"Pelayanan makanan Sydney Airlines adalah" Baik sekali, cukup, jelek
Skala keinginan	Skala yang menunjukkan keinginan responden untuk membeli	"jika disediakan telepon dalam penerbangan jarak jauh, saya akan"
Pertanyaan terbuka Tidak tersruktur	Suatu pertanyaan yang dapat dijawab responden dengan cara yang hampir tidak terbatas	"Bagaimana pendapat saudara mengenai Sydney airlines?"
Asosiasi kata	Kata-kata disajikan satu persatu dan responden menyebutkan kata pertama yang muncul dalam pikirannya	"kata apa yang pertama kali muncul dalam pikiran saudara ketika mendengar kata-kata berikut Airline Sydney Perjalanan
Penyelesaian kalimat	Sebuah kalimat yang belum lengkap disajikan dan responden diminta menyelesaikan kalimat tersebut	"jika saya memilih sebuah maskapai penerbangan pertimbangan yang paling penting dalam keputusan saya adalah"

Penyelesaian cerita	Sebuah cerita yang belum	"saya terbang bersama Sydney
	lengkap disajikan dan	airlines beberapa hari yang lalu. Saya
	responden diminta	melihat bahwa eksterior dan interior
	menyelesaikan kalmiat tersebut	dari pesawat terbang memiliki warna
		yang cerah. Hal ini menimbulkan
		pikiran dan perasaan berikut dalam diri
		saya", sekarang selesaikan cerita ini.
Penyelesaian gambar	Sebuah gambar dengan dua	
	tokoh disajikan, dengan salah	
	satu tokoh membuat sebuah	
	pertanyaan .responden diminta	
	untuk mengidentifikasi	
	pernyataan tokoh yang satu	
	lagi dan diisikan dalam balon	
	yang kosong	
Tes persepsi	Sebuah gambar disajikan dan	
	responden diminta untuk	
	mengarang sebuah cerita	
	mengenai apa yang mereka	
	pikirkan, sedang atau mungkin	
	terjadi dalam gambar tersebut	

b. Data kuantitatif

Data berupa angka dalam arti sebenarnya, jadi berbagai operasi matematika dapat dilakukan pada data kuantitatif. Data kuantitatif dapat dibagi menjadi 2 :

b.1. Data interval

Data interval menempati level pengukuran data yang lebih tinggi dari data ordinal karena selain dapat bertingkat urutannya, juga urutan tersebut dapat di kuantitatifkan. Contoh index prestasi seorang mahasiswa. Dalam data interval tidak mengenal nilai nol yang absolud.

b.2. Data Rasio

Data rasio adalah data dengan tingkat pengukuran paling tinggi diantara jenis data lainnya. Data rasio adalah data bersifat angka dalam arti sesungguhnya (bukan kategori) dan dapat dioperasikan dalam matematika. Perbedaan dengan data interval adalah bahwa data rasio mempunyai titik nol dalam arti yang sesungguhnya. Contoh penjualan baju ditoko pakaian sandang sejumlah 100 potong terjual. Atau jika penjualan adalah 0, berarti memang tidak ada satupun baju yang terjual.

E. Pengolaan data statistic

Pengolaan data statistic dapat dilakukan:

a. Secara manual

Untuk memperoleh hasil olahan data statistic dengan menghitung manual, membutuhkan waktu yang relative lama. rumus-rumus untuk menghitung metodemetode statistic dapat dipelajari dalam mata kuliah teori statistik.

b. Secara komputerisasi

Untuk memperoleh hasil olahan data statistic dengan menggunakan bantuan computer tidak membutuhkan waktu yang lama dan memperoleh hasil yang akurat. Software yang dapat membantu pengolahan data statistic diantaranya adalah SPSS, eviews, Minitab, Matlab, amos.

Cara kerjanya pengolahan data secara komputerisasi :

Anda hanya memasukkan input berupa data, proses akan dilakukan oleh computer dan pada akhirnya akan dihasilkan output berupa hasil olahan data statistik.

Pengelompokkan Data

Dalam proses pengolahan data terkadang kita perlu melakukan mengkategorikan data atau membuat pengelompokkan data berdasarkan kateori tertentu. Umumnya mengkategorikan data berguna untuk mengubah variabel numerik menjadi variabel kategorik.

Sebagai contoh di sini, misalnya kita akan mengkategorikan data usia responden. Pada contoh di bawah ini terdapat 15 orang responden dari bebagai variasi usia dosen IAIN Curup. Misalnya, kita akan mengelompokkan menjadi 3 kategori usia, yaitu < 30 tahun, 30-40 tahu, dan > 40 tahun.

No	Usia
1	29
2	27
3	30
4	31
5	30
6	49
7	36
8	47
9	41
10	35
11	29
12	28
13	38
14	39
15	55

Berikut langkah untuk melakukan kategori data :

1. Setelah kita memiliki data seperti di atas dalam SPSS, klik menu **Tranform**, lalu klik submenu **Recode into Different Variables.**

2. Akan tampil kotak dialog Recode into Different Variables.

Recode into Different Vari	ables
🖋 usia [usia]	Input ⊻ariable -> Output Variable: Output Variable Name:
	OK Paste Cancel Help

3. Dalam kotak dialog Recode into Different Variables, pindahkan variabel usia ke dalam kotak Input Variable -> Output Variable. Sedangkan pada bagian Output Variable, pada bagian Name masukkan nama variabel yang kita inginkan, pada contoh gambar di bawah ini saya memasukkan Kategori Usia. Lanjutkan dengan mengklik tombol Change.

Recode into Different Variab	les	
	Numeric Variable -> Output Variable: Out Isia> ? Nai Lat Isia Old and New Values Output Variable:	put Variable me: pel: Change
	[f (optional case selection condition)	
	OK Paste Reset Cancel Help	

4. Kini nama pada bagian *Numeric Variable -> Output Variable* yang semua *Usia* \rightarrow ? menjadi *Usia* \rightarrow *Kategori Usia*. Setelah itu, klik tombol **Old and New Values.**

Numeric Variable -> Output Variable: Usia> kategori_usia Name: kategori_usia Label: Change Old and New Values If (optional case selection condition)
OK Paste Cancel Help

5. Berikutnya akan tampil kotak dialog *Recode into Different Variables: Old and New Values*. Dalam kotak dialog tersebut terdapat bagian *Old Value* (nilai lama yang akan di*recode*) dan *New Value* (nilai baru sebagai hasil *recode*).

Old Value	New Value
o Value:	Value:
	◯ System-missing
◎ <u>S</u> ystem-missing	○ Copy old value(s)
◯ System- or <u>u</u> ser-missing	
◎ Ra <u>n</u> ge:	Ol <u>d</u> > New:
through	Add
	Change
Range, LOWEST through value:	Remove
Range, value through HIGHEST:	
	Output variables are strings Width: 8
All other values	Convert numeric strings to numbers ('5'->5)
	Context na <u>m</u> ene stings to numbers (3-4-3)

Pertama, kita akan me-recode nilai usia < 30 tahun. Klik pada Range, LOWEST through value, ketiklah angka 29 (karena nialinya < 30). Sedangkan pada bagian *New value* masukkan angka 1 (kategori 1) dan terakhir klik tombol Add.

Old Value	New Value
© <u>V</u> alue:	Value:
	© System-missing
© System-missing	Copy old value(s)
System- or <u>u</u> ser-missing	Ol <u>d</u> > New:
lange.	Lowest thru 29> 1
through	bbA
inough	Change
Range I OWEST through value:	Change
	Remove
Reads value through HICHEST:	
Cange, value unough highEst.	Qutaut variables are strings Width:
All <u>o</u> ther values	Convert numeric strings to numbers ('5'->5)

Masih dalam kotak dialog yang sama, klik pada Range:, kita akan m,embuat kategori usia yang kedua, yaitu 30 sampai 40 tahun. Masukkan nilai 30 dibawah *Range:* dan dibawah *trough* nilainya 40. Sedangkan pada bagian *New Value*, ketiklah angka 2 dan klik tombol Add.

Old Value	New Value
© <u>V</u> alue:	Value:
	© System-missing
System-missing	© Copy old value(s)
◎ System- or <u>u</u> ser-missing	
Range:	Ol <u>d</u> > New:
	Lowest thru 29> 1
	30 thru 40> 2
through	Add
	Change
Range LOWEST through value:	
	Remove
Range, value through HIGHEST:	
	Output variables are strings Width: 8
All other values	Convert numeric strings to numbers ('5'->5)
All outer values	Convertinumenci strings to numbers (5-25)

Proses selanjutnya adalah membuat kategori tiga untuk nilai usia tertinggi. Klik pada bagian Range, value through HIGHEST dan masukkan angka 41 (karena > 40). Sedangkan pada bagian *New Value* masukkanlah angka 3. Terakhir, klik tombol Add,dilanjutkan dengan mengklik tombol Continue.

Recode into Different Variables: Old and New Values	×
⊂ Old Value © <u>V</u> alue:	New Value Value:
© System-missing	© System-missing © Copy old value(s)
© System- or <u>u</u> ser-missing © Ra <u>n</u> ge:	Ol <u>d</u> > New: Lowest thru 29> 1
through	Add 30 thru 40> 2 41 thru Highest> 3
© Range, LOWEST through value:	Remove
Range, value through HIGHEST:	Output varia <u>b</u> les are strings Width: 8
All <u>o</u> ther values <u>Continue</u>	Convert numeric strings to numbers ('5'->5)

9. Setelah kembali pada kotak dialog sebelumnya, klik tombol **OK**. Ketika kembali pada halaman *Data View* maka sebuah variabel baru dengan nama *Kategori Usia* akan tampil.

View	Data	Transform	Analyze	<
u	sia	ala katego	ri_usia	
1	29		1.00	
1	27		1.00	
1	30		2.00	
11	31		2.00	
1	30		2.00	
	49		3.00	
1	36		2.00	
1	47		3.00	
T .	41		3.00	
1	35		2.00	
II	29		1.00	
TI	28		1.00	
11	38		2.00	
	39		2.00	
	55		3.00	

Dari gambar di atas, kita dapat melihat kategori usia responden. Terkadang kita ingin membuat kategori tersebut berupa teks, misalnya "muda" untuk kategori 1 (<30 tahun), "dewasa" untuk kategori 2 (30-40- tahun), dan "tua" untuk kategori 3 (>40 tahun). Untuk mengubah tampilan kategori tersebut, pada SPSS bukalah halaman *Variable View*.

- Pada variabel Kategori Usia yang telah dibuat di atas,isilah nilainya pada kolom Value.
- Isikan pada bagian Value 1 dan Label Muda, lalu klik tombol Add.
- Masukkan Value 2, dengan iisi Label ; Dewasa, klik Add.
- terakhir ketik nilai atau Value 3, Label Tua, dan jangan lupa klik tombol Add.
- Setelah semua label terisi, klik tombol **OK**.

Value Labels		×			
Value Labels Val <u>u</u> e: [Label:		Spelling			
Add 1.00 = Change 3.00 = Remove 1.00 =	"muda" "dewasa" "tua"				
OK Cancel Help					

Sewaktu Anda membuka kembali halaman *Data View* maka tampilan kategori yang semula 1, 2, dan 3. Kini telah berubah menjadi Muda, Dewasa, dan Tua.

[DataSet0] - IBM	SPSS Statistics Data Editor	
⊻iew <u>D</u> ata	Transform Analyze	Gra
🛷 usia	🗞 kategori_usia	~
29	muda	
27	muda	
30	dewasa	
31	dewasa	
30	dewasa	
49	tua	
36	dewasa	
47	tua	
41	tua	
35	dewasa	
29	muda	
28	muda	
38	dewasa	
39	dewasa	
55	tua	

Sebagai tambahan tips, sebelum menutup bab ini. Kita juuga dapat menghitung berapa jumlah responden yang kategori usia muda, dewasa, dan tua. Caranya adalah dengan mengklik menu Analyze, arahkan pada submenu Descriptive Statistics dan klik Frequencies.

<u>V</u> iew <u>D</u> ata	Transform	<u>A</u> nalyze	<u>G</u> raphs	<u>U</u> tilities	E <u>x</u> tensions	<u>W</u> indow	<u>H</u> elp	
		Re <u>p</u> o	orts		•			
🖋 usia	💰 kategori	D <u>e</u> so	riptive Stati	istics	•	123 <u>F</u> requer	ncies	ar
29)	<u>B</u> aye	sian Statist	tics	•	🔓 Descrip	tives	
27	'	Ta <u>b</u> le	s		*	A Explore		
30)	Co <u>m</u>	pare Mean:	S	•			
31		<u>G</u> ene	ral Linear I	Model	•			
30)	Gene	rali <u>z</u> ed Lin	ear Models	•		naiysis)
49)	Mi <u>x</u> eo	Models		•	<u>w</u> atio		
36	5	<u>C</u> orre	late		•	🛜 <u>P</u> -P Plot	ts	
47	/	<u>R</u> egr	ession		•	🛃 <u>Q</u> -Q Plo	ts	
41		L <u>o</u> gli	near		*			
35	j	Neur	al Network	•	•			

Hasilnya akan menampilkan frekuensi responden. Dari gambar di bawah ini untuk usia kategori muda sebanyak 4 orang atau 26,7%, kategori Dewasa 7 orang atau 46,7%, dan kategori Tua 4 orang atau 26,7%.

			usia		
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	27	1	6.7	6.7	6.7
	28	1	6.7	6.7	13.3
	29	2	13.3	13.3	26.7
	30	2	13.3	13.3	40.0
	31	1	6.7	6.7	46.7
	35	1	6.7	6.7	53.3
	36	1	6.7	6.7	60.0
	38	1	6.7	6.7	66.7
	39	1	6.7	6.7	73.3
	41	1	6.7	6.7	80.0
	47	1	6.7	6.7	86.7
	49	1	6.7	6.7	93.3
	55	1	6.7	6.7	100.0
	Total	15	100.0	100.0	
		k	ategori_u	ısia	
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	muda	4	26.7	26.7	26.7
	dewasa	7	46.7	46.7	73.3
	tua	4	26.7	26.7	100.0
	Total	15	100.0	100.0	

Menggunakan SPSS

A. Pendahuluan

SPSS merupakan salah satu software yang dapat digunakan untuk membantu pengolahan, perhitungan, dan analisis data secara statistik. SPSS mengalami perkembangan dari versi 6.0 hingga kini ada versi 20 dan mungkin masih akan terus berkembang lagi. Langkah-langkah untuk mengoperasikan SPSS adalah sebagai berikut :

- a. Jika pada desktop sudah ada ikon SPSS, klik ganda pada ikon tersebut
 Jika tidak ada SPSS, langkah yang harus dilakukan adalah :
 - Klik star
 - Klik all program
 - Klik SPSS for windows
 - Klik SPSS sesuai dengan versi SPSS yang anda pakai

Jika proses berjalan maka akan muncul logo SPSS dan sekaligus menunjukkan versi yang digunakan.

- b. Akan muncul tampilan SPSS dengan menu-menu yaitu File, Edit, View, Data, Transform, Analize, Graph, Utilities, Windows, dan Help. Bagian bawah terdiri dari data view
- c. SPSS siap dioperasikan dengan menginput variable pada variable view dan menginput data-data view.

B. Input Variabel Data Kuantitatif Dan Kualitatif Pada Variabel View Dan Data View Contoh kasus

Berat Ibu	Panjang Bayi	Jenis Kelamin Bayi
60	50	Pria
80	60	wanita
87	67	Pria
68	45	Pria
70	46	Pria
50	45	Pria
60	40	wanita
80	61	wanita
97	69	wanita
90	70	Pria

Memasukkan data sebagai berikut :

Langkah-langkah untuk menginput variable pada variable view dan data pada data view adalah sebagai berikut :

- a. Klik file
- b. Klik new-data
- c. Menampilkan variable view untuk mempersiapkan pemasukan nama dan property variabel. Pilih **variable view** berisi beberapa menu pilihan yaitu :
 - Name, diisi dengan nama atau singkatan variable sesuai dengan keinginan
 - **Type**, jika data berupa angka maka perintah yang diaktifkan adalah numeric, namun jika data yang dimasukkan berupa kata atau huruf, perintah yang diaktifkan adalah string.
 - Width, jika data berupa perintah string maka perlu diisi jumlah karakter huruf. Namun jika data berkarakter angka maka dapat diabaikan.
 - **Decimal**, jika data dengan perintah string, kotak decimal otomatis akan non aktif. Namun jika data dengan perinta numeric, maka kotak kerja decimal place akan aktif. Isilah sesuai keinginan, berupa digit yang akan diisikan.
 - Label, jika pada kotak kerja name yang diisikan adalah singkatan, maka kepanjangan dari singkatan bisa diisikan pada kotak kerja label ini.
 - Value, kotak kerja ini sering diabaikan jika data kuantitatif, untuk data kategori baru diisikan kode kategori tersebut.
 - **Missing**, jika data memiliki nama maka akan dianggap hilang. Biasanya kotak kerja ini diabaikan dalam operasional SPSS
 - **Columns**, digunakan untuk mengatur lebar sempitnya kolom data, bisa ditambah dan dikurangi degan menggunakan fasilitas scroll number, untuk menaikkan atau menurunkan angkanya.
 - Align, digunakan untuk mengatur posisi data, bisa diganti left jika rata kiri, right jika rata kanan dan center jika rata tengah
 - **Measure**, digunakan sesuai dengan jenis data yang digunakan dalam penelitian. Bisa berupa scale, nominal, ordinat.

Dalam hal ini ada dua variable yaitu :

Variable pertama : berat ibu

Oleh karena itu variable pertama berupa data kuantitatif, tempatkan pointer pada baris 1 Nama : ketik berat **Type** : pilihlah numeric

Width : ketik 8

Decimal : untuk keseragaman 0

Label : ketik berat ibu

Untuk value, missing, coloumns, align, measure diabaikan saja

Variabel kedua: panjang bayi

Oleh karena itu variable kedua berupa data kuantitatif, tempatkan pointer pada baris 2

Nama : ketik panjang

Type : pilihlah numeric

Width : ketik 8

Decimal : untuk keseragaman 0

Label : ketik panjang bayi

Untuk value, missing, coloumns, align, measure diabaikan saja

Variabel ketiga : jenis kelamin bayi

Oleh karena itu variable ketiga berupa data kuantitatif, tempatkan pointer pada baris 3

Nama : ketik kelamin

Type : pilihlah numeric

Width : ketik 1

Decimal : untuk keseragaman 0

Label : ketikjenis kelamin bayi

Value : pilihlah ini untuk proses pemberian kode. Klik kotak kecil dikanan sel. Tampil dilayar :

Value Labels	×
Value Labels	
	Spelling
Add	
Change	
OK Cancel Help	

Pengisian

- Value : ketik 1
- Label : ketik pria

Klik add

 Label : ketik wanita Klik add Klik ok

Missing : none

Columns : ketik 8

Align : pilih right

Measure : pilih scale

Sehingga akan tampak dilayar sebagai berikut :

	U* 🚺	Intitled1	[DataSet0] - IBM	SPSS Statistics (Data Editor	٨		_	fai s	and had			
	<u>F</u> ile	<u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>T</u> ransform	<u>A</u> nalyze <u>(</u>	<u>G</u> raphs <u>U</u> t	ilities E <u>x</u> tensions	<u>W</u> indow	<u>H</u> elp				
			Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure	Role
		1	berat	Numeric	8	0	berat ibu	None	None	8	≣ Right	🖋 Scale 🔍 🔻	🔪 Input
		2	panjang_bayi	Numeric	8	0	panjang bayi	None	None	8	遭 Right	🖋 Scale	🔪 Input
		3	kelamin	Numeric	8	0	jenis kelamin b	{1, pria}	None	8	≣ Right	🖋 Scale	🔪 Input
		4											
		5											
L													

d. Pilih **DataView** masukkan data berat ibu, panjang bayi dan jenis kelamin. Sehingga tampak dilayar sebagai berikut :

10 : kelamin	1			
	🧬 berat	panjang_ bayi	🤣 kelamin	
1	60	50	1	
2	80	60	2	
3	87	67	1	
4	68	45	1	
5	70	46	1	
6	50	45	1	
7	60	40	2	
8	80	61	2	
9	97	69	2	
10	90	70	1	
11				

Untuk jenis kelamin jika

1=pria

2=wanita

Untuk menampilkan data kualitatif (nominal) catatan!!! ; jika pada variable gender masih keluar angka maka klik menu **view-value labels**

Sehingga tampak sebagai berikut :

13 :				
	🤣 berat	panjang_ bayi	🧬 kelamin	
1	60	50	pria	
2	80	60	wanita	
3	87	67	pria	
4	68	45	pria	
5	70	46	pria	
6	50	45	pria	
7	60	40	wanita	
8	80	61	wanita	
9	97	69	wanita	
10	90	70	pria	
11				

C. Menu Analyze

SPSS berguna untuk membantu pengolahan data secara statistik. Dalam pengolahan data statistik, SPSS menyediakan Command Windows dengan nama analyze. Menu analyze memiliki sub menu yang digunakan untuk statistik, seperti descriptive, comparemeans, correlate, regression, classify, datareduction, dan scale. masing-masing submenu tersebut memiliki sub sub menu statistic yang lebih spesifik.

Olah data yang dapat dilakukan antara lain statistic deskriptif melalui menudescriptive melalui menu descriptive Statistic , uji beda dapat dilakukan melalui menu compare mean, uji hubungan dapat dilakukan melalui correlate, uji pengaruh sederhana dan berganda dapat dilakukan melalui menu regresion, uji asumsi klasik dapat dilakukan bersama-sama melalui proses regesi dan korelasi, uji validitas dan reliabilitas dapat dilakukan melalui menu scale, uji analisis diskriminan dapat dilakukan melalui menu data reduction, dan lain sebagainya.

Eile	<u>E</u> dit	<u>V</u> iew <u>D</u>	ata	Transform	<u>A</u> nalyze	<u>G</u> raphs	<u>U</u> tilities	E <u>x</u> tensions
13:					Repo	orts		*
		🧼 🤣 🤣	t	🛷 panjang_	D <u>e</u> sc	riptive Stati	stics	•
				bayi	Baye	sian Statist	ics	
	1		60	50	Ta <u>b</u> le	es		•
	2		80	60	Com	pare Means	5	•
	3		87	67	Gene	eral Linear I	Model	•
_	4		68	45	Gene	aralized Lin	ear Models	*
	5		70	46	Mixed	d Models		
	6		50	45	Corre	elate		•
	7		60	40	Rear	ession		•
	8		80	61	Logli	near		
	9		97	69	Nour	al Notwork	_	
	10		90	70	Clear	ainetworks	>	
	11				Class	SILV		
	12				Dime	ension Rea	uction	
	13				Sc <u>a</u> le	9		
	14				Nonp	parametric	Tests	•
	15				Fored	cas <u>t</u> ing		•
	16				Survi	val		-
	17				M <u>u</u> lti;	ple Respon	se	4

BAB II STATISTIK TERAPAN

ΤΥθΥΑΝ ΠΕΜΒΕΛΑθΑΡΑΝ

Setelah mahasiswa mengikuti perkuliahan, mahasiswa dapat menjelaskan konsep statistik terapan; statistik deskriptif dan statistik inferensial yakni statistik parametrik dan non parametrik

Melakukan pengujian statistik deskriptif dan statistik inferensial untuk pengolahan data

Statistic Deskriptii

A. Pendahuluan

Statistic deskriptif adalah pengolahan data untuk tujuan mendeskripsikan atau member gambaran terhadap obyek yang diteliti melalui data sample atau populasi. Data yang diolah dalam statistic deskriptif hanya satu variable saja. Pada statistic deskriptif dapat menghasilkan tabel, grafik, diagram.

Variable adalah sesuatu yang berbentuk yang ditetapkan oleh peneliti dipelajari dengan seksama sehingga diperoleh informasi berupa data dan diolah dengan statistic sehingga dapat ditarik kesimpulan.

Contoh analisis deskriptif

Data nilai statistic mahasiswa akuntansi semester 2 universitas X adalah sebagai berikut :

No.induk	Nilai	Gender
1	50	Laki-laki
2	50	Perempuan
3	100	Laki-laki
4	80	Perempuan
5	95	Perempuan
6	70	Laki-laki
7	60	Laki-laki
8	60	perempuan
9	70	Perempuan
10	50	Perempuan
11	80	Laki-laki
12	90	Perempuan
13	60	Laki-laki
14	70	Perempuan
15	70	Perempuan
16	70	Laki-laki
17	70	Perempuan
18	60	Laki-laki
19	70	Perempuan
20	70	Perempuan
21	90	Perempuan
22	50	Perempuan
23	60	Perempuan
24	70	Perempuan
25	70	Laki-laki
Data diatas dapat dianalisis dengan statistik deskriptif untuk memberikan gambaran tentang gender dan nilai statistic mahasiswa akuntansi semester 2 universitas X.

Analisis statistic deskriptif gender

Terdapat 16 mahasiswa akuntansi universitas X bergender perempuan, terdapat 9 mahasiswa akuntansi universitas X bergender laki-laki.

Analisis statistic deskriptif nilai statistic

Mean adalah membagi data menjadi dua bagian sama besar, dan kemudian menghitung nilai data yang membagi data menjadi dua bagian tersebut. Median nilai statistic mahasiswa akuntansi semester 2 universitas X adalah 70.

Modus adalah menghitung jumlah data yang paling sering muncul dalam sekelompok data. Modus nilai statistic mahasiswa akuntansi semester 2 universitas X adalah 70.

Standar deviasi adalah akar dari varians menunjukkan simpangan baku.Standar deviasi nilai statistic mahasiswa akuntansi semester 2 universitas X adalah 14,312.

DalamprogramSPSS untuk menggambarkan data digunakan menu **analyze-descriptive** statistic, menu ini berisi sub-sub menu **Frequencies**, descriptive, explore, crosstabs.

A. Frequencies

Membahas beberapa penjabaran ukuran statistic deskriptif seperti mean, median, kuartil, persentil, standar deviasi, dll dengan menggunakan menu **Frequencies**.

Contoh kasus

Berikut ini adalah data tinggi badan dan gender dari 10 responden yang diambil secara acak

No induk	Nilai	IQ
1	50	100
2	50	100
3	100	150
4	80	120
5	95	130
6	70	115
7	90	125
8	60	100
9	70	115
10	50	100

Penyelesaian

- 1. Pemasukan data ke SPSS
 - Buka lembar kerja baru klik File-new-data
 - Menampilkan Variabel view untuk mempersiapkan pemasukan nama dan property variabel.

Variable pertama : nilai Maka isikan : Nama : ketik nilai Type : pilihlah numeric Width : ketik 8 **Decimal** : ketik 0 Label : ketiknilai siswa Value : none Missing : none **Columns** : ketik 8 Align : pilih right Measure : pilih scale Variable kedua : **IQ** Maka isikan : Nama : ketik IQ **Type** : pilihlah numeric Width : ketik 8 **Decimal** : ketik 0 Label : ketikIQ siswa Value : none Missing : none **Columns** : ketik 8 Align : pilih right Measure : pilih scale Sehingga akan tampak dilayar sebagai berikut :

<u>F</u> ile	<u>E</u> dit	<u>V</u> iew <u>D</u> at	a <u>T</u> ransform	<u>A</u> nalyze	<u>G</u> raphs <u>U</u> t	ilities E <u>x</u> tensions	<u>W</u> indow	<u>H</u> elp				
		Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure	Role
	1	nilai	Numeric	8	0	nilai siswa	None	None	8	🗏 Right	🖋 Scale	🔪 Input
	2	IQ	Numeric	8	0	lq siswa	None	None	8	≣ Right	🖉 Scale	🔪 Input

2. Mengisi data

Setelah nama variable didefinisikan, langkah selanjutnya adalah mengisi 10 data nilai dan IQ responden. Untuk itu, kembalikan tampilan pada data view. Isikan data sehingga akan tampak dilayar sebagai berikut :

	🛷 nilai	🧳 IQ
1	50	100
2	50	100
3	100	150
4	80	120
5	95	130
6	70	115
7	90	125
8	60	100
9	70	115
10	50	100

3. Menyimpan data

Data diatas dapat disimpan, dengan prosedur sebagai berikut :

- Dari menu utama SPSS, pilih menu File-save as
- berikan nama file untuk keseragaman berikan nama **deskriptif** dan tempatkan file pada directory yang dikehendaki.
- 4. Mengolah data

Untuk mencari nilai mean, median, modus, quartile, varian, standar deviasi.

Langkah-langkah :

- Pilih analyze-descriptivestatistic-frequencies
- Lalupindahkannilai, IQ kekotak variable(s) seperti tampak dilayar sebagai berikut

Frequencies			x
	•	<u>V</u> ariable(s): <mark> ∲ nilai siswa [nilai]</mark> ∲ Iq siswa [IQ]	Statistics Charts Eormat Style Bootstrap
Display frequency tables	aste	Reset Cancel Help	

• Pilih tombol statistics

Beri tanda $\sqrt{}$ pada mean, median, mode

Beri tanda $\sqrt{\text{pada quartiles}}$

Beri tanda $\sqrt{\text{Std}}$ deviation, variances, maka akan tampak dilayar sebagai berikut :

Frequencies: Statistics	×
Percentile Values Quartiles Cut points for: 10 equal groups Percentile(s): Add Change	Central Tendency ✓ Mean ✓ Median ✓ Mode ─ Sum
Dispersion Std. deviation Minimum Variance Maximum Range S.E. mean Continue Cancel	Values are group midpoints Characterize Posterior Dis Skewness Kurtosis Help

Klik Continue

• Klik pilih tombol Charts

Pilih histogram dan with normal curve, maka akan tampak dilayar sebagai berikut :

×
am

Klik Continue

• Klik pilihan tombol format

Pilih ascending values data akan disusun dari terkecil ke terbesar, maka akan tampak layar sebagai berikut:

Frequencies: Format	X				
Order by <u>Ascending values</u> <u>Descending values</u> Asc <u>ending counts</u> Desce <u>n</u> ding counts	Multiple Variables <u>O</u>rganize variables <u>O</u>rganize output by variables Suppress tables with many categories <u>Maximum number of categories</u>: 10 				
Continue Cancel Help					

Klik continue Klik Ok

5. Menyimpan Output

Output daridata yang sudah diolah dapat disimpan, dengan prosedur sebagai berikut:

- Dari menu utama SPSS, pilih menu File-save as
- Berikan nama file untuk keseragaman berikan nama output deskriptif dan tempatkan file pada directory yang dikehendaki
- 6. Output SPSS dan analisisnya

Frequencies

Statistics					
		nilai siswa	lq siswa		
N	Valid	10	10		
	Missing	0	0		
Mean		71.50	115.50		
Median		70.00	115.00		
Mode		50	100		
Std. Deviation	ו	19.156	16.575		
Variance		366.944	274.722		
Percentiles	25	50.00	100.00		
	50	70.00	115.00		
	75	91.25	126.25		

Frequency Table

	nilai siswa						
			Frequency	Percent	Valid Percent	Cumulative Percent	
Va	alid	50	3	30.0	30.0	30.0	
		60	1	10.0	10.0	40.0	
		70	2	20.0	20.0	60.0	
		80	1	10.0	10.0	70.0	
		90	1	10.0	10.0	80.0	
		95	1	10.0	10.0	90.0	
		100	1	10.0	10.0	100.0	
		Total	10	100.0	100.0		

			lq siswa		
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	100	4	40.0	40.0	40.0
	115	2	20.0	20.0	60.0
	120	1	10.0	10.0	70.0
	125	1	10.0	10.0	80.0
	130	1	10.0	10.0	90.0
	150	1	10.0	10.0	100.0
	Total	10	100.0	100.0	

Histogram

Output bagian pertama (Frequencies)

- N adalah jumlah data yang valid adalah 10 buah Data yang hilang/missing adalah 0
- Meanataurata-rata nilai adalah 71,50 Mean atau rata-rata IQ adalah 115,50
- Median adalah nilai tengah dari nilai siswa adalah 70
 Median adalah nilai tengah dari IQ adalah 115
- Mode atau nilai sering muncul dari nilai siswa adalah 50 Mode atau nilai sering muncul dari IQ siswa adalah 100
- Std Deviation dari nilai adalah 19,156 Std deviation dari IQ adalah 16,575
- Variance dari Nilai adalah 366,944 Variance dari IQ adalah 274,722
- Dari nilai quartile 1 adalah 50, nilai quartil 2 adalah 70, nilai quartile 3 adalah 91,25

Dari IQ quartile 1 adalah 100, nilai quartile 2 adalah 115, nilai quartile 3 adalah 126,25

Output bagian kedua (Frequency Table)

Pada baris pertama siswa yang mempunyai nilai 50 terdapat 3 orang atau (3/10x100%) = 30% dan seterusnya.

Pada baris pertama siswa yang mempunyai IQ 100 terdapat 4 orang atau (4/10x100%) = 40% dan seterusnya.

Output bagian ketiga (histogram nilai siswa)

Batang histogram terdiri dari garis horizontal (x) berisi nilai siswa dan garis vertical (y) berisi frekwensi nilai.

Output bagian keempat (histogram IQ siswa)

Batang histogram terdiri darigaris horizontal (x) berisi IQ siswa dan garis vertical (y) berisif rekwensi IQ.

C. Descriptive

Perintah deskriptif digunakan untuk menampilkan deskripsi statistic dari variable numeric yang dipilih.

Data menggunakan data tinggi badan diatas. Buka data Deskriptif.

Langkah-langkahnya :

- 1. Mengolah data
 - File-Open-Data-Cari data deskriptif
 - Pilih Analyze- Descriptive Statistics-Descriptive
 - Lalu pindahkan nilai siswa, IQ siswa kekotak variable(s) seperti tampak dilayar sebagai berikut:

Variable(s):	Descriptives		×
Style Bootstrap Style Bootstrap Save standardized values as variables OK Paste Reset Cancel Help	Save standardized value	Variable(s):	Options Style Bootstrap

• Pilih tombol **Option**

Beri tanda $\sqrt{}$ pada **mean**

Beri tanda $\sqrt{\text{pada}\text{Std deviation}}$

Beri tanda $\sqrt{}$ pada **variance**

Beri tanda $\sqrt{\text{pada sum}}$

Beri tanda $\sqrt{}$ pada **Minimum**

Beri tanda $\sqrt{}$ pada **maximum**

Beri tanda $\sqrt{}$ pada **ascending means**

Seperti tampak pada layar sebagai berikut :

Descriptives: Options	J
In Mean In Sum	
C Dispersion	
Std. deviation 🔽 Minimum	
✓ Variance ✓ Maximum	
🔲 <u>R</u> ange 📰 S. <u>E</u> . mean	
Characterize Posterior Distribut	
Kurtosis Ske <u>w</u> ness	
Display Order	
© Varia <u>b</u> le list	
◎ <u>A</u> lphabetic	
Ascending means	
Descending means	

Klik Continue

- Klik Ok
- 2. Menyimpan Output
- 3. Output SPSS dan analisisnya

Descriptive Statistics											
N Minimum Maximum Sum Mean Std. Deviation Var											
nilai siswa	10	50	100	715	71.50	19.156	366.944				
lq siswa	10	100	150	1155	115.50	16.575	274.722				
Valid N (listwise)	10										

Output (descriptive statistics)

Nilai siswa sebanyak 10 responden mempunyai hasil minimum 50, maximum 100, jumlah 715, rata-rata 71,50, standar deviasi 19,156, variance 366,944.

IQ siswa sebanyak10 responden mempunyai hasil minimum 100, maximum 150, jumlah 1155, rata-rata 115,50, standar deviasi 16,575, variance 274,722.

D. Explore

Pada menu explore dapat digunakan untuk melihat statistic deskriptif berupa nilai mean, nilai maksimum, nilai minimum, dan lain sebagainya. Dalam menu explore dapat juga melihat tinggi yang dikelompokkan berdasarkan jenis gender

Contoh kasus

No	Tinggi(cm)	Gender
1	160	Wanita
2	150	Wanita
3	155	Wanita
4	145	Wanita
5	165	Wanita
6	155	Wanita
7	145	Wanita
8	156	Wanita
9	154	Wanita
10	160	Wanita
11	170	Pria
12	167	Pria
13	171	Pria
14	172	Pria
15	168	Pria
16	178	Pria
17	165	Pria
18	169	Pria
19	170	Pria
20	172	Pria

Berikut ini adalah tinggi badan dan gender 20 responden yang diambil secara acak

Penyelesaian

1. Pemasukan data ke SPSS

langkah-langkah

- buka lembar baru File-New-Data
- Menampilkan**Variabel view** untuk mempersiapkan pemasukan nama dan property variabel.

Variable pertama : Tinggi Maka isikan : Nama : ketik tinggi Type : pilihlah numeric Width : ketik 8 Decimal : ketik 0 Label : ketiktinggi Value : none Missing : none Columns : kretik 8 Align : pilih right Measure : pilih scale Variable kedua : gender Maka isikan :

Nama : ketik gender

Type : pilihlah numeric

Width : ketik 1 karena gender dapat dimasukkan sebanyak satu digit

Decimal : ketik 0

Label : ketikgender

Value : pilihlah ini untuk proses pemberian kode. Klik kotak kesil dikanan sel. Tampil dilayar :

Value Labels	x
Value Labels	
Value:	Spelling
Label:	
Romovo	
Remove	
OK Cancel Help	

Pengisian :

- ➢ Value : ketik 1
- ➤ Label : ketik wanita
- ≻ Klik Add
- ➢ Value : ketik 2
- Label : ketik pria
 Klik Add

klik Ok

Missing : none

Columns : ketik 8

Align : pilih right

Measure : pilih scale

Sehingga akan tampak dilayar sebagai berikut :

<u>F</u> ile	<u>E</u> dit	<u>V</u> iew <u>D</u>	ata	<u>T</u> ransform	<u>A</u> nalyze	<u>G</u> raphs <u>U</u> t	tilities E <u>x</u> tensions	<u>W</u> indow	<u>H</u> elp			
		Name		Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure
	1	tinggi		Numeric	8	0	tinggi	None	None	8	≣ Right	🖋 Scale
1	2	gender		Numeric	1	0	gender	{1, wanita}	None	8	≣ Right	🖋 Scale
	2											

2. Mengisi

Setelah nama variable didefinisikan, langkah selanjutnya adalah mengisi 20 data tinggi dan gender responden. Untuk itu, kembalikan tampilan pada **data view**. Isikan data sehingga akan tampak dilayar sebagai berikut :

23 : gender		
	🥟 tinggi	sender
1	160	wanita
2	150	wanita
3	165	wanita
4	145	wanita
6	165	wanita
6	155	wanita
7	145	wanita
8	156	wanita
9	154	wanita
10	160	wanita
11	170	pria
12	167	pria
13	171	pria
14	172	pria
15	168	pria
16	178	pria
17	165	pria
18	169	pria
19	170	pria
20	172	pria

Catatan!!! : jika pada gender masih keluar angka maka klik menu View- value labels

3. Menyimpan data

Data diatas dapat disimpan, dengan prosedur sebagai berikut :

- Dari menu utama SPSS, pilih menu File-save as
- berikan nama file untuk keseragaman berikan nama **deskriptif1** dan tempatkan file pada directory yang dikehendaki.

4. Mengolah data

Langkah-langkah :

- Pilih analyze-descriptivestatistic-Explore
- Lalupindahkan tinggi pada kotak dependent list dan Gender ke kotak faktor list seperti tampak dilayar sebagai berikut :

Explore	×							
	Dependent List: Statistics Image: tinggi [tinggi] Plots Eactor List: Options Image: gender [gender] Bootstrap Label Cases by: Label Cases by:							
■ Both ◎ Statistics ◎ F	Plots							
OK Paste Reset Cancel Help								

• Pada display

Pilih statistics

Sehingga akan tampak dilayar sebagai berikut :

Klik Ok

- 5. Menyimpan Output
- 6. Output SPSSdan Analisisnya Explore

Gender

Case Processing Summary											
	Cases										
		Val	lid	sing	Total						
	gender	N	Percent	Ν	Percent	N	Percent				
tinggi	wanita	10	100.0%	0	0.0%	10	100.0%				
	pria	10	100.0%	0	0.0%	10	100.0%				

	Descriptives										
	gender			Statistic	Std. Error						
tinggi	wanita	Mean		154.50	2.040						
		95% Confidence Interval	Lower Bound	149.89							
		for Mean	Upper Bound	159.11							
		5% Trimmed Mean		154.44							
		Median		155.00							
		Variance		41.611							
		Std. Deviation		6.451							
		Minimum		145							
		Maximum	165								
		Range	20								
		Interquartile Range	11								
		Skewness	161	.687							
		Kurtosis	471	1.334							
	pria	Mean		170.20	1.114						
		95% Confidence Interval	Lower Bound	167.68							
		for Mean	Upper Bound	172.72							
		5% Trimmed Mean		170.06							
		Median		170.00							
		Variance		12.400							
		Std. Deviation		3.521							
		Minimum		165							
		Maximum		178							
		Range		13							
		Interquartile Range		4							
		Skewness		.957	.687						
		Kurtosis		2.168	1.334						

Output bagi pertama (Case Processing Summary)

Bagian ini mengenal jumlah data wanita ada 10 yang diproses dimana semua data valid (100% data dapat diproses)

Output bagi kedua (Deskriptif)

Bagian ini mengenai ringkasan statistic deskriptif dari wanita dan pria responden:

- Rata-rata tinggi wanita154,50 cm dengan range berkisar antara 149,89 cm sampai 159,11 cm. rata-rata tinggi pria 170,20 cm dengan range antara 167,68 cm sampai 172,72 cm
- 5% trimmed mean. Ukuran ini didapat dengan mengurutkan data tinggi wanita dari terkecil sampai terbesar, kemudian memotong 5% dari data terkecil dan 5% dari data terbesar. Hal ini bertujuan untuk membuang (trimming) nilai data yang menyimpang karena jauh dari rata-rata. Terlihat hasil 154,44 cm yang berarti rata-rata tinggi dengan proses trimming menjadi 49,3889 kg. mean ini lebih mempunyai informasi yang berguna dibandingkan dengan data median.
- Median adalah nilai tengah untuk tinggi wanita 155 cm, tinggi pria 170 cm
- Variance untuk tinggi wanita 41,611 dan pria 12,400
- Standar deviasi untuk tinggi wanita 6,451 dan pria 3,521
- Nilai minimal dan maximal untuk tinggi wanita adalah 145 cm, 165 cm
 Nilai minimal dan maximal untuk tinggi pria adalah 165 cm, 175 cm
- Range untuk tinggi wanita 20 dan pria 13
- Interquartile range. Ukuran ini menunjukkan selisih antara nilai persentil yang ke 25 dan persentil yang ke 75, seperti diketahui secara teoritis 50% dari data terletak diantara persentil ke 25 dan persentil ke 75. Dari output didapat nilai 11 cm yang berarti pada 50% data tinggi wanita, selisih antara yang tertinggi dan terendah adalah 11cm.
- Rasio skewnes = -0,161/0,687= -0,234
 Kurtosis =-0,471/1,334 = -0,353
 Nilai masih diantara -2 sampai 2 jadi data berdistribusi normal

E. Crosstab

Crosstab digunakan untuk menampilkan tabulasi silang yang menunjukkan suatu distribusi bersama, diskripsi statistic dan pengujian terhadap dua variable atau lebih.

Penggunaan Crosstab untuk data berkala nominal (kategori).

Contoh kasus

Seorang peneliti penderita anemia ingin melihat kepatuhan meminum tablet Fe berdasarkan tingkat pendidikan dengan data sebagai berikut:

No	Pendidikan	Kepatuhan
1	Sarjana	Patuh
2	Akademi	Patuh
3	Sarjana	Patuh
4	Akademi	Patuh
5	Sarjana	Patuh
6	Akademi	Patuh
7	Akademi	Patuh
8	Sarjana	Patuh
9	Sarjana	Patuh
10	SMA	Patuh
11	Sarjana	Tidak Patuh
12	SMA	Tidak Patuh
13	SMA	Tidak Patuh
14	SMA	Tidak Patuh
15	Akademi	Tidak Patuh
16	Akademi	Tidak Patuh
17	SMA	Tidak Patuh
18	SMA	Tidak Patuh
19	SMA	Tidak Patuh
20	SMA	Tidak Patuh

Penyelesaian :

1. Pemasukan data ke SPSS

langkah-langkah:

- ✓ Buka lembar kerja baru klik **File-new-data**
- ✓ Menampilkan variable view untuk mempersiapkan pemasukan nama dan property variabel
 - Variable pertama : pendidikan
 - Maka isikan:

Nama : ketik didik

Type : pilihlah numeric

Width : ketik 1 karena pendidikan dapat dimasukkan sebanyak satu digit

Decimals : ketik 0

Catatan !!! ketikkan decimal 0 terlebih dahulu sebelum memasukkan width : 1

Label : ketik pendidikan

Value : pilihlah ini untuk pemberian kode. Klik kotak kecil dikanan sel. Tampil dilayar:

Calue Labels	×
Value Labels Val <u>u</u> e: L abel:	Spelling
Add Change Remove	
OK Cancel Help	

Pengisian :

Value : ketik 1 Label : pilih sarjana Klik Add Value : ketik 2 Label : ketik akademi Klik Add Value : ketik 3 Label : ketik SMA Klik Add Klik Ok Missing : None Columns : ketik 8 Align : pilih Right Measure : pilih scale Variable kedua kepatuhan Maka isikan: Nama : ketik patuh Type : pilihlah numeric Width : ketik 1 karena pendidikan dapat dimasukkan sebanyak satu digit Decimals : ketik 0

Label : ketik kepatuhan

Value : pilihlah ini untuk pemberian kode. Klik kotak kecil dikanan sel. tampil dilayar:

Value Labels	×
Value Labels	Spelling
Add Change Remove	
OK Cancel Help	

Pengisian :

Value : ketik 1 Label : pilih patuh Klik Add Value : ketik 2 Label : ketik tidak patuh Klik Add Missing : None Columns : ketik 8 Align : pilih Right Measure : pilih scale Sehingga akan tampak dilayar sebagai berikut:

<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	<u>D</u> ata	<u>T</u> ransform	<u>A</u> nalyze	<u>G</u> raphs <u>U</u> t	ilities E <u>x</u> tensions	<u>W</u> indow	<u>H</u> elp			
		Na	me	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure
	1	didik		Numeric	1	0	pendidikan	{1, sarjana}	None	8	🗐 Right	🖋 Scale
	2	patuh		Numeric	1	0	kepatuhan	{1, patuh}	None	8	🗃 Right	🖋 Scale
		•					I	191 - V				•

2. Mengisi Data

Setelah nama variable didefinisikan, langkah selanjutnya adalah mengisi 20 data pendidikan dan kepatuhan. Untuk itu, kembalikan tampilan pada data view. Isikan data sehingga akan tampak sebagai berikut:

E	le <u>E</u> dit	View	Data	Transform
21	1:			
		J 🧈 (didik	🥓 patuh
	1	1	sarjana	patuh
	2	al	cademi	patuh
	3	1	sarjana	patuh
	4	al	cademi	patuh
	5	4	sarjana	patuh
	6	al	cademi	patuh
	7	al	cademi	patuh
	8	4	arjana	patuh
	9	4	sarjana	patuh
	10		SMA	patuh
	11	1	sarjana	tidak patuh
	12		SMA	tidak patuh
	13		SMA	tidak patuh
	14		SMA	tidak patuh
	15	al	kademi	tidak patuh
	16	al	cademi	tidak patuh
	17		SMA	tidak patuh
	18		SMA	tidak patuh
	19		SMA	tidak patuh
	20		SMA	tidak patuh

3. Menyimpan data

Data diatas dapat disimpan, dengan prosedur sebagai berikut:

- Dari menu utama SPSS, pilih menu File-Save as
- berikan nama file untuk keseragaman berikan nama**Crosstab**dan tempatkan file pada directory yang dikehendaki.

4. Mengolah data

Langkah-langkah :

- Pilih analyze-descriptivestatistic-Crosstab
- Lalupindahkan**pendidikan** pada kotak Row(s) dan **kepatuhan** ke kotak Column(s) seperti tampak dilayar sebagai berikut :

Crosstabs		x
	Row(s): Pendidikan [didik] Column(s): Kepatuhan [patuh] Layer 1 of 1 Previous Next Disp[ay layer variables in table layers	Exact Statistics Cglis Format Style Bootstrgp
Display clustered <u>b</u> ar charts		
	Paste Reset Cancel Help	

Klik Ok

Keterangan:

- Kotak Rows, untuk memilih variable yang case nya akan ditampilkan secara baris
- Kotak, Column, untuk memilih variabel yang case nya akan ditampilkan secara kolom
- 5. Menyimpan output
- 6. Output SPSS dan Analisisnya

Crosstab

	Case	Processi	ng Su	mma	ary				
		Cases							
	Val	id		Miss	sing	To	tal		
	Ν	Percent	Ν		Percent	Ν	Percent		
pendidikan * kepatuha	n 20	100.0%		0	0.0%	20	100.0%		
Count									
			kepa	tuh	an				
		patu	h	tid	ak patuh	Tof	tal		
pendidikan	sarjana		5		1		6		
	akademi		4		2		6		
	SMA		1		7		8		
Total			10		10		20		

Output bagi pertama (Case Processing Summary)

Output bagian pertama menyatakan bahwa seluruh data valid untuk dilakukan proses crosstab, sehingga tidak ada data yang hilang (missing)

Output pendidikan bagian kedua (pendidikan *kepatuhan Crosstabulation)

Output bagian ini menyatakan berpendidikan sarjana berjumlah 6 orang masingmasing yang patuh ada 5 orang dan yang tidak patuh ada 1 orang, berpendidikan akademik berjumlah 6 orang masing-masing yang patuh ada 4 orang dan yang tidak patuh ada 2 orang, berpendidikan SMA berjumlah 8 orang masing-masing yang patuh ada 1 orang dan yang tidak patuh ada 7 orang.

Statistik Inferensial Non-Parametrik

Jika data yang ada tidak berdistribusi normal, atau jumlah data sangat sedikit maka perlu digunakan alternatif-alternatif metode-metode statistik yang tidak harus memakai suatu parameter tertentu.metode tersebut disebut metode statistik non-parametrik.

Dalam SPSS menyediakan menu khusus untuk perhitungan statistiknon-parametrik. Berikut ini adalah berbagai metode non-parametrik yang digunakan dalam upaya alternatif terhadap metode parametrik.

Aplikasi	Test Parametrik	Test Non Parametrik
Uji Satu Sampel		
Satu Sampel	One sample t test	Uji Runs (Runs Test of Randomness), Uji Binomial
Uji Dua Sampel		
Dua sampel saling berhubungan	Paired sample t	Uji Tanda (Sign), Uji
(two Dependent Samples)	test	Wilcoxon
Dua sampel tidak saling berhubungan (two Independent Samples)	Independent sample t test	MAnri Whitney
Uji Beberapa Sampel		
Beberapasampelberhubungan(several Dependent Samples)		Friedman test
Beberapa sampel tidak saling berhubungan (several Independent Samples)		Kruskal Willis

Uji Runs ingin menguji apakah sebuah sampel mewakili sebuah populasi telah diambil secara acak (random). Jika tidak, maka sampel tersebut tidak dapat digunakan untuk perlakuan lebih lanjut seperti untuk menggambarkan isi populitas.

Contoh Kasus

Dalam proses pembuatan kacang atom, manajer produksi mendapat informasi bahwa selama ini, rata-rata pengemasan berat kacang atom per pack PT KACANG GARUDA adalah 80 gram. Untuk menguji kebenaran pernyataan tersebut diambil 10 sampel berat rata-rata kacang atom per pack dalam satu proses pengemasan, dengan hasil sebagai berikut:

Sampel ke	Berat (gr)
1	82,6
2	80,32
3	79,2
4	84,2
5	81,32
6	80,1
7	79,8
8	80
9	78,7
10	81,25

Penyelesaian

Langkah-langkahnya

- 1. Pemasukan data ke SPSS
- Buka lembar kerja baru klik File-New-Data
- Menampilakan Variabel View untuk mempersiapkan pemasukan nama dan property variabel.
- Variabel pertama: berat

Maka isikan:

Name: ketik berat

Type: pilih Numeric

Width: pilih 8

Decimal: pilih 2 Label: ketik berat kacang Value: pilih None Missing: pilih None Columns: pilih 8 Align: pilih Right Measure: pilih Scale Sehingga akan tampak di layar sebagai berikut:

t a *I	Untitled2 [[DataSet1] - IBM	SPSS Statistics [Data Editor								
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>T</u> ransform	<u>A</u> nalyze	<u>G</u> raphs <u>U</u> t	ilities E <u>x</u> tensions	<u>W</u> indow	<u>H</u> elp				
		Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure	Role
	1	berat	Numeric	8	2	berat_kacang	None	None	8	≣ Right	🖋 Scale	🔪 Input
	2											
	3											

2. Mengisi Data

Setelah nama variabel didefiinisikan, langkah selanjutnya adalah mengisi 10 data berat kacang per pack. Untuk itu, kembalikan tampilan pada **Data View**. Isikan data sehingga akan tampak di layar sebagai berikut:

*Untitled2	[DataSet1] - IBM				
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata				
14 : berat					
	🧳 berat				
1	826.00				
2	8032.00				
3	792.00				
4	842.00				
5	8132.00				
6	801.00				
7	798.00				
8	80.00				
9	787.00				
10	8125.00				
11					

3. Menyimpan Data

Data di atas dapat disimpan, dengan prosedur sebagai berikut:

- Dari menu utama SPSS, pilih menu File-Save As
- Berikan nama file untuk keseragaman berikan nama **Runs** dan tempatkan file pada directory yang dikehendaki.

4. Mengolah Data

- Klik Analyze-Non Parametrik Test- Runs
- Masukkan berat kacang pada kotak Test Variable List
- Pada Cut Point pilih Custom isikan 80, sehingga tampak di layar sebagai berikut:

Runs Test	Test Variable List:	Exact
	~	
Cut Point ✓ Median Mode Mean ✓ Custom:	80	
ОКЕ	aste <u>R</u> eset Cancel Help	

Klik OK

- 5. Menyimpan Hasil Output
- 6. Output SPSS Dan Analisisnya

Perumusan Masalah

Apakah fluktuasi berat kacang per pack bersifat random?

Hipotesis (Dugaan)

Ho : fluktuasi Berat kacang perpack bersifat random (acak)

Ha : fluktuasi Berat kacang perpack tidak bersifat random(acak)

Analisis

Pengambilan Keputusan Jika Sig > 0,05 maka Ho diterima Jika Sig < 0,05 maka Ho ditolak Sig penelitian ini adalah 0,737 maka lebih besar dari 0,05 sehingga Ho diterima jadi keputusannya adalah fluktuasi berat kacang perpack bersifat random (acak). Hal ini berarti terjadinya fluktuasi berta kacang perpack pada proses pengemasan bersifat random, atau fluktuasi ini, bersifat kebetulan. Berarti pengemasan kacang dan dilakukan pengepackan masih bisa dikatakan relative sama dengan 80 gram.

B.Uji satu sampel (Uji Binomial)

Uji Binomial ingin menguji sebuah sampela,apkah ciri tertentunsampel tersebut bisa dianggap sama dengan ciri populasi. 'Binomial' menyatakan data akan dibagi menjadi dua bagian saja.

Contoh Kasus

Manajer PT KACANG GARUDA selama ini, memperoleh informasi bahwa ratarata daya tahan kacang atom adalah 80 jam (setelah itu kacang akan menjamur dan berubah warna serta rasa). Untuk menguji kebenaran informasi tersebut dilakukan pengujian 10 kacang atom dengan hasil sebagai berikut:

Sampel ke	Daya Tahan (Jam)
1	80
2	79,90
3	80,80
4	81,10
5	80
6	80,3
7	81,2
8	79,50
9	80,5
10	80.31

Penyelesaian

Langkah-langkahnya

- 1. Pemasukan data ke SPSS
 - Buka lembar kerja baru klik File-New-Data
 - Menampilakan Variabel View untuk mempersiapkan pemasukan nama dan properti variabel.
 - Variabel pertama : Daya Tahan

Maka isikan: Name : ketik daya Type : pilih Numeric Width : pilih 8 Decimal : pilih 2 Label : ketik Daya tahan Value : pilih None Missing : pilih None Columns : pilih 8 Align : pilih Right Measure : pilih Scale Sehingga akan tampak di layar sebagai berikut:

r	ta *Un	titled3	[DataSet2	2] - IBM	SPSS Statistics D	Data Editor	•							
	<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	<u>D</u> ata	<u>T</u> ransform	<u>A</u> nalyze <u>(</u>	<u>G</u> raphs <u>U</u> t	ilities E <u>x</u> tensions	<u>W</u> indow	<u>H</u> elp				
			Nai	me	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure	Role
	1		daya		Numeric	8	2	daya_tahan	None	None	8	<mark>≣</mark> Right	🖋 Scale	🔪 Input
	2)												

2. Mengisi Data

Setelah nama variabel didefinisikan, langkah selanjutnya adalah mengisi 10 data daya tahan kacang per pack. Untuk itu, lembalikan tampilan pada **DataView.** Isikan data sehingga akan tampak di layar sebagai berikut:

-	*Untitled3	[DataSet2] - IBM S			
	<u>Eile Edit</u>	<u>V</u> iew <u>D</u> ata			
	19:				
		🥔 daya 📗			
	1	80.00			
	2	7990.00			
	3	8080.00			
	4	8110.00			
	5	80.00			
	6	803.00			
	7	812.00			
	8	7950.00			
	9	805.00			
	10	80.31			

3. Menyimpan Data

Dari data di atas dapat disimpan, debgan prosedur sebagai berikut:

- Dari menu utama SPSS, pilih menu File-Save As
- Berikan nama file untuk keseragaman berikan nama **Binomial** dan tempatkan file pada directory yang dikehendaki.

4. Mengolah Data

- Klik Analyze-Non Parametrik Test-Binomial
- Masukkan Daya Tahan pada kotak Test Variables List
- Pada Cut Point pilih Custom isikan 80
- Pada **Test Proportion** isikan **0,5** (Uji Binomial mengguankan tanda dan +, dimana tanda untuk data dibawah 80, dan tanda + untuk data diatas 80. Karena ada dua tanda dengan kemungkinan sama, maka p=0,5).Sehingga tampak di layar sebagai berikut:

- Klik tombol **Options** pilih **Descriptive**
- Klik Continue
- Klik OK
- 5. Menyimpan hasil Output
- 6. Output SPSS dan Analisisnya

		Descript	ive Statis	tics			
	Ν	Mean	Std. Dev	iation	Minimun	n Maximum	
daya_tahan 10		3479.0310	3930.4	3930.45037		8110.00	_
		Category	Binomia N	l Test Obs P	erved rop.	Test Prop.	Exact Sig. (2- tailed)
daya_tahan	Group 1	<= 80	2		.20	.50	.109
	Group 2	> 80	8		.80		
	Total		10		1.00		

Perumusan Masalah

Apakah terdapat perbedaan daya tahan kacang atom perpack dengan daya tahan kacang yang ditetapkan (80 jam)?

Hipotesis (Dugaan)

- Ho : Tidak terdapat perbedaan daya tahan kacang atom perpack dengan daya tahan kacang yang ditetapkan (80 jam)
- Ha : Terdapat perbedaan daya tahan kacang atom perpack dengan daya tahan kacang yang sudah ditetapkan (80 jam)

Analisis

Pengambilan keputusan

Jika Sig > 0,05 maka Ho diterima

Jika Sig < 0,05 maka Ho ditolak

Sig penelitian ini adalah 0,109 maka lebih besar dari 0,05 sehingga Ho diterima jadi keputusannya adalah tidak terdapat perbedaan daya tahan kacang atom perpack dengan daya tahan kacang atom yang sudah ditetapkan (80 jam).

Uji tanda merupakan bagian dari statistik non parametric untuk menguji 2 sampel yang saling berhubungan, seperti pada contoh kasus dibawah ini.

Contoh Kasus

STATISTIK INFERENSIAL NON-PARAMETRIK. Seorang dosen statistik melakukan penelitian tentang apakah ada perbedaan antara nilai ujian seorang mahasiswa pada mata kuliah statistik, mahasiswa ujian ia belajar dengan banyak latihan dan jika ia belajar dengan tidak latihan. Untuk itu maka diadakan dua kali ujian mata kuliah statistik, pertama ujian dilaksanakan sebelum mahasiswa belajar statistik dengan latihan, dan yang kedua ujian dilaksanakan sesudah mahasiswa belajar statistic dengan latihan. Datanya sebagai berikut:

No.	Tidak Latihan	Latihan		
1	47	72		
2	60	80		
3	42	62		
4	77	82		
5	62	72		
6	52	90		
7	62	82		
8	42	72		
9	52	72		
10	62	67		
11	40	72		
12	52	62		
13	52	82		
14	67	72		
15	67	92		
16	77	82		
17	72	92		
18	67	72		
19	62	72		
20	47	72		

Penyelesaian

Langkah-langkahnya

1. Pemasukan data ke SPSS

- Buka lembar kerja baru klik File-New-Data
- Menampilakan Variabel View untuk mempersiapkan pemasukkan nama dan properti variabel.
- Variabel pertama : latihan

Maka isikan:

Name : ketik latihan

Type : pilih Numeric

Width : pilih 8

Decimal : pilih 0

Label : ketik latihan

Value : pilih None

Missing : pilih None

 $Columns: {\tt pilih}\ 8$

Align : pilih Right

Measure : pilih Scale

• Variabel kedua : tidak latihan

Maka isikan:

Name : ketik tidak latihan

Type : pilih Numeric

Width : pilih 8

Decimal : pilih 0

Label : ketik tidak latihan

Value : pilih None

Missing : pilih None

Columns : pilih 8

Align : pilih Right

Measure : pilih Scale

Sehingga akan tampak di layar sebagai berikut:

<u>F</u> ile	<u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>T</u> ransform	<u>A</u> nalyze	<u>G</u> raphs <u>U</u> l	ilities E <u>x</u> tensions	<u>W</u> indow	<u>H</u> elp				
		Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure	Role
	1	latihan	Numeric	8	0	latihan	None	None	8	≣ Right	🖋 Scale	🔪 Input
	2	tidak_latihan	Numeric	8	0	tidak latihan	None	None	8	≣ Right	🖋 Scale	🔪 Input
	0											

2. Mengisi Data

Setelah nama variabel didefinisikan, langkah selanjutnya adalah mengisi 20 data sendiri dan kelompok. Untuk itu, lembalikan tampilan pada **DataView.** Isikan data sehingga akan tampak di layar sebagai berikut:

🥓 latihan	tidak_lati han	
72	47	
80	60	
62	42	
82	77	
72	62	
90	52	
82	62	
72	42	
72	52	
67	62	
72	40	
62	52	
82	52	
72	67	
92	67	
82	77	
92	72	
72	67	
72	62	
72	47	

3. Menyimpan Data

Dari data di atas dapat disimpan, dengan prosedur sebagai berikut:

- Dari menu utama SPSS, pilih menu File-Save As
- Berikan nama file untuk keseragaman berikan nama **Sign** dan tempatkan file pada directory yang dikehendaki.

4. Mengolah Data

- Klik Analyze-Non Parametrik Test-2 Related Samples
- Masukkan latihan dan tidak latihan pada kotak Test Pair(s) List

Two-Related-Samples Tests	Test Pairs:	Event
✓ Iatihan [Iatihan] ✓ tidak Iatihan [tidak_1	Pair Variable1 Variable2 1 Italihan [I Italikak lati 2 Italihan [I Italihak lati 3 Italihan [I Italihak lati 4 Italihak lati Italihak lati 5 Italihak lati Italihak lati 5 Italihak lati Italihak lati 6 Wilcoxon Italihak lati 6 Marginal Homogeneity Italihak lati 0K Paste Reset Cancel	Deptions

Tes Type :pilih Sign

Klik **OK**

- 5. Menyimpan hasil Output
- 6. Output SPSS dan Analisisnya

Sign Test				
F	requencies			
	-	N		
tidak latihan - latihan	Negative Differences ^a	20		
	Positive Differences ^b	0		
	Ties ^e	0		
	Total	20		
a. tidak latihan < latihan				
b.tidak latihan ≻lat	ihan			
c. tidak latihan = lati	ihan			
Test Statistics ^a				
1	tidak latihan - latihan			
Exact Sig. (2-tailed)	.000 ^b			
a. Sign Test				
b. Binomial distribut	tion used.			

Perumusan Masalah

Apakah terdapat perbedaan nilai mahasiswa untuk mata kuliah statistik jika ia latihan dengan ia tidak latihan?

Hipotesis (Dugaan)

Ho : tidak ada perbedaan nilai mahasiswa untuk mata kuliah statistik jika ia latihan dengan jika ia belajar tidak latihan

Ha : ada perbedaan nilai mahasiswa untuk mata kuliah statistik jika ia belajar latihan dengan ia belajar tidak latihan

Analisis

Pengambilan Keputusan

Jika Sig > 0,05 maka Ho diterima

Jika Sig < 0,05 maka Ho ditolak

Sig pada penelitian ini adalh 0,000 maka lebih kecil dari 0,05 sehingga Ho ditolak jadi keputusannya adalah ada perbedaan nilai mahasiswa untuk mata kuliah statistik jika ia belajar latihan dengan ia belajar tidak latihan.

Uji Wilcoxon digunakan untuk menentukan ada tidakya perbedaan rata-rata antara dua sampel yang saling berhubungan. Jika data sampel bertipe interval atau rasio, serta distribusi data mengikuti distribusi normal, bisa dilakukan uji parametric untuk dua sampel berhubungan, seperti uji t paired. Namun jika salah satu syarat tersebut tidak terpenuhi yaitu: data bertipe normal atau ordinal, data bertipe interval atau rasio, namun tidak berdistribusi normal. maka uji t paired harus diganti dengan uji non parametric yang khusus digunakan untuk dua sampel yang berhubungan.

Contoh Kasus

Pengukuran hasil belajar statistik terhadap 22 mahasiswa sebelum dan sesudah diterapkannya metode baru tercatat dalam table dibawah ini:

Mahasiswa	Sebelum diterapkan Metode Baru (X)	Sesudah diterapkan Metode Baru (Y)
1	72	75
2	70	73
3	68	69
4	67	68
5	73	72
6	71	72
7	72	72
8	70	71
9	69	57
10	70	73
11	68	69
12	72	71
13	69	68
14	66	69
15	73	74
16	71	73
17	70	70
18	72	74
19	70	68
20	69	71

Penyelesaian

Langkah – langkahnya

1. Pemasukan data ke SPSS

- Buka lembar kerja baru klik File-New-Data
- Menampilakan Variabel View untuk mempersiapkan pemasukkan nama dan properti variabel.
- Variabel pertama : Sebelum diterapkan metode baru

Maka isikan:

Name : ketik sebelum

Type : pilih Numeric

Width : pilih 8

Decimal : pilih 0

Label : ketik Sebelum diterapkan metode baru

Value : pilih None

Missing : pilih None

Columns : pilih 8

Align : pilih Right

Measure : pilih Scale

• Variabel kedua : sesudah diterapkan metode baru

Maka isikan:

Name : ketik sesudah

Type : pilih Numeric

Width : pilih 8

Decimal : pilih 0

Label : ketik sesudah diterapkan metode baru

Value : pilih None

Missing : pilih None

Columns : pilih 8

Align : pilih Right

Measure : pilih Scale

Sehingga akan tampak di layar sebagai berikut:

<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>T</u> ransform	<u>A</u> nalyze <u>(</u>	<u>G</u> raphs <u>U</u> t	ilities E <u>x</u> tensions <u>W</u> indow <u>H</u> elp						
	Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure	Role
1	sebelum	Numeric	8	0	sebelum diterapkan metode baru	None	None	8	≣ Right	🖉 Scale	🔪 Input
2	sesudah	Numeric	8	0	sesudah diterapkan metode baru	None	None	8	≣ Right	🖉 Scale	🔪 Input
3	1										

2. Mengisi Data

Setelah nama variabel didefinisikan, langkah selanjutnya adalah mengisi 20 data mahasiswa sebelum dan sesudah diterapkannya metode baru. Untuk itu, kembalikan tampilan pada **DataView.** Isikan data sehingga akan tampak di layar sebagai berikut:

3		
🥔 sebelum	🛷 sesudah	
72	75	
70	73	
68	69	
67	68	
73	72	
71	72	
72	72	
70	71	
69	57	
70	73	
68	69	
72	71	
69	68	
66	69	
73	74	
71	73	
70	70	
72	74	
70	68	
69	71	

3. Menyimpan Data

Dari data di atas dapat disimpan, dengan prosedur sebagai berikut:

- Dari menu utama SPSS, pilih menu File-Save As
- Berikan nama file untuk keseragaman berikan nama **Wilcoxon** dan tempatkan file pada directory yang dikehendaki.

4. Mengolah Data

- Klik Analyze-Non Parametrik Test-2 Related Samples
- Masukkan sebelum dan sesudah pada kotak Test Pair(s) List
- Pada test Type pilih Wilcoxon, sehingga tampak di layar sebagai berikut:

Klik **OK**

- 5. Menyimpan hasil Output
- 6. Output SPSS dan Analisisnya

Wilcoxon Signed Ranks Test				
	Rank	s		
		м	Mean Rank	Sum of Ranks
sesudah diterapkan	Negative Ranks	5 ^a	8.90	44.50
diterapkan metode baru	Positive Ranks	13 ^b	9.73	126.50
	Ties	2°		
	Total	20		
Test Statisti	cs ^a			
Test Statisti	cs ^a sesudah diterapkan metode baru - sebelum			
diterapkan metode baru				
Z	-1.816 ^b			
Asymp. Sig. (2-tailed)	.069			
a. Wilcoxon Signed Ranks Test				
b. Based on negative i	ranks.			

Analisis

Output Pertama (Rank)

Proses Perhitungan Wilcoxon

Sebelum	Sesudah	Selisih	Tanda	Ranking
72	75	3	Positif	15,5
70	73	3	Positif	15,5
68	69	1	Positif	5
67	68	1	Positif	5
73	72	-1	Negatif	5
71	72	1	Positif	5
72	72	0	Ties	-
70	71	1	Positif	5
69	57	-12	Negatif	18
70	73	3	Positif	15,5
68	69	1	Positif	5
72	71	-1	Negatif	5
69	68	-1	negatif	5
66	69	3	Positif	15,5
73	74	1	Positif	5
71	73	2	Positif	11,5
70	70	0	Ties	-
72	74	2	Positif	11,5
70	68	-2	Negatif	11,5
69	71	2	Positif	11,5

Ranking berasal dari:

Selisih terkecil selain 0 adalah 1, jumlah angka selisih 1 ada 9 terdapat pada urutan 1,2,3,4,5,6,7,8,9 maka (1+2+3+4+5+6+7+8+9)/9=5

Selisih kedua terkecil adalah 2, jumlah angka selisih 2 ada 4 terdapat pada urutan 10,11,12,13 maka (10+11+12+13)/4=11,5

Selisih ketiga terkecil adalah 3, jumlah angka selisih 3 ada 4 terdapat pada urutan 14,15,16,17 maka (14+15+16+17)/4=15,5

Selisih ke-empat terkecil adalah 12, jumlah angka selisih 12 ada 1 terdapat pada urutan 18 maka (18)/1=18

Dari table

Rank (Wilcoxon menggunakan ranking dari selisih data) didapat:

Negative Differences atau selisih antara 'sesudah' dan 'sebelum' disini terdapat 5 data negative (N) . rata –rata Ranking data negative (Mean Ranking) adalah (5+5+5+11,5+18)/5 = 8,90. Jumlah Ranking Data Negative (Sum Rank) adalah (5+5+5+11,5+18)=44,5.

- Positif Differences atau selisih antara 'sesudah' dan 'sebelum'. Disini terdapat 13 data posisi (N). rata rata Ranking Data positif (Mean Ranking) adalah (5 + 5 + 5 + 5 + 5 + 5 + 11,5 + 11,5 + 11,5 + 15,5 + 15,5 + 15,5 + 15,5) / 13 = 9,73 . Jumlah Ranking Data Positif (Sum Rank) adalah (5 + 5 + 5 + 5 + 5 + 5 + 11,5 + 11,5 + 11,5 + 15,5 + 15,5 + 15,5) = 126,5
- Ties atau data antara 'sesudah' dan 'sebelum' sama. Disini terdapat 2 data yang sama (N).

Output kedua (Test Statistics)

Perumusan Masalah

Apakah terdapat perbedaan hasil belajar statistik sebelum dan sesudah diterapkannya metode baru?

Hipotesis (Dugaan)

Ho : Tidak ada perbedaan hasil belajar statistik sebelum dan sesudah diterapkannya metode baru?

Ha : Ada perbedaan hasil belajar statistik sebelum dan sesudah diterapkannya metode baru?

Analisis

Pengambilan Keputusan

Jika Sig > 0,05 maka Ho diterima

Jika Sig < 0,05 maka Ho ditolak

Sig pada penelitian ini adalah 0,069 maka lebih besar dari 0,05 sehingga Ho diterima jadi keputusannya adalah Tidak ada perbedaan hasil belajar statistik sebelum dan sesudah diterapkannya metode baru.

Contoh kasus :

Seorang dosen statistik melakukan penelitian tentang apakah ada perbedaan tingkat kemampuan mahasiswa PGMI dan mahasiswa PAI pada mata kuliah statistik. Datanya sebagai berikut:

No	Tingkat Kemampuan	Mahasiswa
1	80	DCMI
1	80	POIVII
2	75	PGMI
3	60	PGMI
4	70	PGMI
5	85	PGMI
6	68	PAI
7	60	PAI
8	79	PAI
9	71	PAI
10	90	PAI

Penyelesaian

Langkah – langkahnya

1. Pemasukan data ke SPSS

- Buka lembar kerja baru klik File-New-Data
- Menampilakan Variabel View untuk mempersiapkan masukkan nama dan properti variabel.
- Variabel pertama : tingkat kemampuan

Maka isikan:

Name : ketik tingkat kemampuan

Type : pilih Numeric

Width : pilih 8

Decimal : pilih 0

Label : ketik tingkat kemampuan

Value : pilih None

Missing : pilih None

Columns : pilih 8

Align : pilih Right

Measure : pilih Scale
• Variabel kedua : mahasiswa

Maka isikan:

Name : ketik mahasiswa

Type : pilih Numeric

Width :ketik 1 karena tingkat kemampuan dapat dimasukkan sebanyak satu digit.

Decimal : ketik 0 berarti tidak ada decimal

Catatan: Decimal ;isikan 0 terlebih dahulu baru Width ; isikan

Label : ketik tingkat kemampuan

Value : pilih ini untuk proses pemberian kode. Klik kotak left di kanan sel. Tampil di layar :

Value Labels	×
Value Labels	
Value:	Spelling
Label:	
Add Change Remove	
OK Cancel Help	

Pengisian Value : ketik 1 Label : ketik PGMI Klik Add Value : ketik 2 Label : ketik PAI Klik Add Klik ok Missing: pilih None Columns: pilih 8 Align: pilih Right

Sehingga	akan	tampak	di	lavar	sebagai	berikut:

	<u>V</u> iew <u>D</u> ata	<u>T</u> ransform	<u>A</u> nalyze (<u>G</u> raphs <u>U</u> f	ilities E <u>x</u> tensions	<u>W</u> indow	<u>H</u> elp				
	Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure	Role
Ī	tingkat_kem.	Numeric	8	0	tingkat kemam	None	None	8	<mark>≣</mark> Right	🖉 Scale	🖌 Input
	mahasiswa	Numeric	1	0	tingkat kemam	{1, PGMI}	None	8	<mark>≣</mark> Right	🖉 Scale	🖌 Input
1											

2. Mengisi Data

Setelah nama variabel didefinisikan, langkah selanjutnya adalah mengisi 10 data tingkat kemampuan dan mahasiswa. Untuk itu, kembalikan tampilan pada **Data View.** Isikan data sehingga akan tampak di layar sebagai berikut:

🛷 tingkat	🛷 mahasisw a
80	PGMI
75	PGMI
60	PGMI
70	PGMI
85	PGMI
68	PAI
60	PAI
79	PAI
71	PAI
90	PAI

3. Menyimpan Data

Dari data di atas dapat disimpan, debgan prosedur sebagai berikut:

- Dari menu utama SPSS, pilih menu File-Save As
- Berikan nama file untuk keseragaman berikan nama **Mann Whitney** dan tempatkan file pada directory yang dikehendaki.

4. Mengolah Data

- Klik Analyze-Non Parametrik Test-2 independent Samples
- Masukkan Tingkat kemampuan pada kotak Test variable List
- Masukkan **mahasiswa** pada kotak **Grouping Variable**, sehingga tampak di layar sebagai berikut:

Two-Independent-Samples Tests	
Ies C C C C C C C C C C C C C	t Variable List: tingkat kemampuan Qptions uping Variable: hasiswa(? ?) fine Groups
Test Type ✓ Mann-Whitney U Schwarz Moses extreme reactions Wald-V	gorov-Smirnov Z Volfowitz runs
OK Paste Rese	t Cancel Help

test Type : pilih **Mann Whitney U** klik tombol **Define Grouping**

isilah **Grouping 1** dengan **1** dan **Grouping 2** dengan **2** sehingga tampak dilayar adalah sebagai berikut:

ta Two Indepe	ndent Samples:
Group <u>1</u> :	1
Group <u>2</u> :	2
Continue	Cancel Help

klik Continue

klik **Ok**

- 5. Menyimpan hasil Output
- 6. Output SPSS dan Analisisnya

Ranks					
	tingkat kemampuan	Ν	Mean Rank	Sum of Ranks	
tingkat kemampuan	PGMI	5	5.70	28.50	
	PAI	5	5.30	26.50	
	Total	10			
Test Sta	tingkat kemampuan				
Test Sta	tistics ^a tingkat kemampuan				
Test Sta Mann-Whitney U	tistics ^a tingkat kemampuan 11.500				
Test Sta Mann-Whitney U Wilcoxon W	tistics ^a tingkat kemampuan 11.500 26.500				
Test Sta Mann-Whitney U Wilcoxon W Z	tingkat kemampuan 11.500 26.500 210				
Test Sta Mann-Whitney U Wilcoxon W Z Asymp. Sig. (2-tailed)	tingkat kemampuan 11.500 26.500 210 .834				
Test Sta Mann-Whitney U Wilcoxon W Z Asymp. Sig. (2-tailed)	tingkat kemampuan 11.500 26.500 210 .834				

Perumusan Masalah

Apakah terdapat perbedaan tingkat kemampuan belajar statistik mahasiswa PGMI dan PAI **Hipotesis (Dugaan**)

Ho : Tidak ada perbedaan tingkat kemampuan belajar statistik mahasiswa PGMI dan PAI

Ha : Ada perbedaan tingkat kemampuan belajar statistik mahasiswa PGMI dan PAI

Pengambilan Keputusan

Jika Sig > 0,05 maka Ho diterima

Jika Sig < 0,05 maka Ho ditolak

Sig pada penelitian ini adalah 0,834 maka lebih besar dari 0,05 sehingga Ho diterima jadi keputusannya adalah Tidak ada perbedaan tingkat kemampuan belajar statistik mahasiswa PGMI dan PAI

F. Uji Tiga atau lebih Sampel Yang Saling Berhubungan (Uji Friedman)

Uji Friedman termasuk salah satu alat uji dalam statistik non-parametrik yang sering digunakan dalam praktek untuk menguji dua atau lebih sampel yang saling berhubungan. Seperti contoh kasus di bawah ini:

Contoh Kasus

Perusahaann permen CANDY Yogyakarta akan memproduksi permen buah rasa mangga, melon, apel, durian. Untuk mengetahui bagaimana tanggapan konsumen terhadap keempat rasa permen buah tersebut maka diadakan riset atau penelitian, sejumlah 10 orang memberikan penilaian pada tiap-tiap rasa permen buah tetrsebut. Datanya sebagai berikut:

Responden	Mangga	Melon	Apel	Durian
1	80	60	85	70
2	90	70	90	80
3	80	90	80	70
4	70	70	90	90
5	80	70	90	80
6	90	70	90	80
7	80	80	90	70
8	80	90	90	80
9	90	70	70	70
10	95	70	80	80

Penyelesaian

Langkah – langkahnya

1. Pemasukan data ke SPSS

- Buka lembar kerja baru klik File-New-Data
- Menampilakan Variabel View untuk mempersiapkan pemasukkan nama dan properti variabel.
- <u>Variabel pertama : Mangga</u> Maka isikan:
 - Name : ketik Mangga
 - **Type** : pilih **Numeric**
 - Width : pilih 8
 - Decimal : pilih 0
 - Label : ketik Mangga
 - Value : pilih None
 - Missing : pilih None
 - Columns : pilih 8
 - Align : pilih Right
 - Measure : pilih Scale
- Variabel kedua : Melon
 - Maka isikan:
 - Name : ketikMelon
 - Type : pilih Numeric
 - Width :pilih 8
 - Decimal : pilih 0
 - Label : ketik Melon
 - Value : pilih None
 - Missing: pilih None
 - Columns: pilih 8
 - Align: pilih Right
 - Measure : pilih Scale
- <u>Variabel ketiga</u> : <u>Apel</u>
 Maka isikan:
 - Name : ketik Apel

Type : pilih **Numeric**

Width : pilih 8

 $Decimal: {\tt pilih} \ 0$

Label : ketik Apel

Value : pilih None

Missing: pilih None

Columns: pilih 8

Align: pilih Right

Measure : pilih Scale

• Variabel keempat : Durian

Maka isikan:

Name : ketik Durian

Type : pilih Numeric

Width :pilih 8

Decimal : pilih 0

Label : ketik Durian

Value : pilih None

Missing: pilih None

Columns: pilih 8

Align: pilih Right

Measure : pilih Scale

Sehingga akan tampak di layar sebagai berikut:

<u>V</u> iew <u>D</u> ata	<u>T</u> ransform	<u>A</u> nalyze <u>G</u>	<u>G</u> raphs <u>U</u> t	ilities E <u>x</u> tensions	<u>W</u> indow	<u>H</u> elp				
Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure	Role
mangga N	lumeric	8	0	mangga	None	None	8	≣ Right	🔗 Scale	🔪 Input
melon N	lumeric	8	0	melon	None	None	8	≣ Right	🔗 Scale	🔪 Input
apel N	lumeric	8	0	apel	None	None	8	≣ Right	🔗 Scale	🔪 Input
durian N	lumeric	8	0	durian	None	None	8	≣ Right	🔗 Scale	🔪 Input

2. Mengisi Data

Setelah nama variabel didefinisikan, langkah selanjutnya adalah mengisi 10 data permen rasa buah yaitu Mangga, Melon, Apel, Durian. Untuk itu, kembalikan tampilan pada **DataView.** Isikan data sehingga akan tampak di layar sebagai berikut:

				_
🛷 mangga	🛷 melon	🧳 apel	🛷 durian	
80	60	85	70	
90	70	90	80	
80	90	80	70	
70	70	90	90	
80	70	90	80	
90	70	90	80	
80	80	90	70	
80	90	90	80	
90	70	70	70	
95	70	80	80	

3. Menyimpan Data

Dari data di atas dapat disimpan, debgan prosedur sebagai berikut:

- Dari menu utama SPSS, pilih menu File-Save As
- Berikan nama file untuk keseragaman berikan nama **Friedman** dan tempatkan file pada directory yang dikehendaki.

4. Mengolah Data

- Klik Analyze-Non Parametrik Test-X Related Samples
- Masukkan Mangga, Melon, Apel, Durian pada kotak Test variable List
- sehingga tampak di layar sebagai berikut:

(ta	Tests for Several Related Sample	s	×			
	•	Test Variables: Mangga [mangga] Mangga [mangga] Mangga [melon] Mapel [apel] durian [durian]	Exact Statistics			
	Test Type ✓ Friedman ■ Kendall's W ■ Cochran's Q OK Paste Reset Cancel Help					

test Type : pilih Friedman klik Ok

- 5. Menyimpan hasil Output
- 6. Output SPSS dan Analisisnya

	Friedman Test					
	Ra	ank	s			
	Mean Rank					
	mangga		2.85			
	melon		1.85			
	apel		3.30			
	durian		2.00			
	Test Si	tati	stics ^a			
	N		10			
-	Chi-Squar	е	10.012			
	df		3			
	Asymp. Sig.		.018			
a. Friedman Test						

Perumusan Masalah

Apakah keempat tasa permen mempunyai penilaian ? mutu yang sama?

Hipotesis (Dugaan)

Ho : Tidak ada perbedaan penilaian/mutu keempat rasa permen (Keempat rasa permen mempunyai penilaian /mutu yang sama)

Ha : ada perbedaan penilaian/mutu keempat rasa permen (keempat rasa permen tidak mempunyai penilaian mutu yang sama)

Pengambilan Keputusan

a. Dengan Membandingkan Statistik Hitung dan Statistik Tabel

Jika Statistik Hitung < Statistik Tabel, maka Ho diterima Jika Statistik Hitung > Statistik Tabel, maqka Ho ditolak

• Statistik Hitung

Dari Output di atas terlihat bahwa statistik hitung Friedman (sama dengan perhitungan Chi-Square) adalah 10,012

• Statistik Tabel

Dengan mellihat Chi-Square. Untuk df (derajat kebebasan%= k-1 =4-1=3 dan tingkat signifikan (α) = 5%, maka didapat statistik table Chi-Square = 7,815

b. Dengan Menggunakan Probabilitas / Nilai Signifikan

Jika Sig > 0,05 makaa Ho diterima

Jika Sig < 0,05 maka Ho ditolak

Sig pada penelitian ini adalah 0,018 maka lebih kecil dari 0,05 sehingga Ho ditolak jadi keputusannya adalah Ada perbedaan penilaian/mutu keempat rasa permen (Keempat rassa permen tidak mempunyai penilaian / mutu yang sama).

G.Uji Tiga Atau Lebih Sampel Yang Tidak Berhubungan (Uji Kruskal Wallis)

Uji Kruskal Wallis termasuk salah satu alat uji dalam statistik non parametric yang sering digunakan dalam praktek untuk menguji beberapa sampel yang tidak berhubungan.

Contoh Soal

PT PHILIS memproduksi tiga buah lampu dengan merek X,Y dan Z. Manajer produksi ingin mengetahui apakah ada perbedaan mutu produksi yang nyata antara ketiga merek lampu tersebut. Untuk itu diambil sejunlah sample tertentu masing-masing merek lampu, kemudian diiukur masa hidupnya (menyalakan alat yang sama hingga mati). Datanya sebagai berikut:

Masa (jam)	Merek
400	Merek X
401	Merek X
402	Merek X
404	Merek Y
406	Merek Y
409	Merek Y
395	Merek Z
380	Merek Z
398	Merek Z

Penyelesaian

Langkah-langkahnya

1. Pemasukan data ke SPSS

- Buka lembar kerja baru klik File-New-Data
- Menampilakan Variabel View untuk mempersiapkan pemasukkan nama dan properti variabel.
- Variabel pertama : Masa

Maka isikan:

- Name : ketik Masa
- Type : pilih Numeric
- Width : pilih 8
- Decimal : pilih 0
- Label : ketik Masa
- Value : pilih None
- Missing : pilih None

Columns : pilih 8

Align : pilih Right

Measure : pilih Scale

 <u>Variabel kedua : Merek</u> Maka isikan:

Name : ketik Merek

Type : pilih Numeric Width :pilih 1 Decimal : pilih 0

Catatan:

Desimal: Isikan 0 terlebih dahulu baru Width : isikan 1

Label : ketik Merek

Value : pilihlah ini untuk proses pemberian kode. Klik kotak kecil di kanan sel. Tampil di layar sebagai berikut:

Value Labels	— X — 1
Value Labels Value: Label:	Spelling
Add Change Remove	
OK Cancel Help	

Pengisian

Value : ketik 1 Label: ketik Merek X Klik Add Value: ketik 2 Label : ketik Merek Y Klik Add Value: ketik 3 Label : ketik Merek Y Klik Add Klik Ok Missing: pilih None Columns: pilih 8

Measure : pilih Scale

Sehingga akan tampak di layar sebagai berikut:

T T	-				<u> </u>	<u> </u>			
Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure
masa	Numeric	8	0	masa	None	None	8	≣ Right	🔗 Scale
merek	Numeric	1	0	merek	{1, merek X}	None	8	≣ Right	Unknown

2. Mengisi Data

Setelah nama variabel didefinisikan, langkah selanjutnya adalah mengisi 9 data penilaian merek lampu X,Y,Z. Untuk itu, lembalikan tampilan pada **DataView.** Isikan data sehingga akan tampak di layar sebagai berikut:

🖋 masa	🛷 merek	
400	merek X	
401	merek X	
402	merek X	
404	merek Y	
406	merek Y	
409	merek Y	
395	merek Z	
380	merek Z	
398	merek Z	

3. Menyimpan Data

Dari data di atas dapat disimpan, dengan prosedur sebagai berikut:

- Dari menu utama SPSS, pilih menu File-Save As
- Berikan nama file untuk keseragaman berikan nama **Kruskal** dan tempatkan file pada directory yang dikehendaki.

4. Mengolah Data

- Klik Analyze-Non Parametrik Test- K Independent List
- Masukkan masa pada kotak Test variable List, dan masukkan merek pada kotak Grouping Variable, sehingga akan tampak di layar sebagai berikut:

test Type : pilih Kruskal Wallis H
klik tombol Define Grouyping
isilah Grouping 1 dengan 1 dan Grouping 2 dengan 3
sehingga tamp[pak di layar sebagai berikut:

😭 Several Independent Sampl 🗾 🎫	
Range for Grouping Variable	
Mi <u>n</u> imum: 1	
Maximum: 3	
Cancel Help	

klik Continue

klik **Ok**

- 5. Menyimpan hasil Output
- 6. Output SPSS dan Analisisnya

Perumusan Masalah

	R		
	м	Mean Rank	
masa	merek×	3	5.00
	merek Y	3	8.00
	merek Z	3	2.00
	Inerek Z		
	Total	9	
Tes	Total	9 s ^{a,b} masa	
Tes	Total	9 s ^{a,b} masa 7.200	
Tes Kruska	Total st Statistic	9 s ^{a,b} masa 7.200 2	

Apakah ketiga merek lampu mempunyai mutu produksi yang sama?

Hipotesis (Dugaan)

Ho : Tidak ada perbedaan mutu produksi (ketiga merek lampu mempunyai mutu yang sama) Ha : ada perbedaan mutu produksi ketiga merek lampu (ketiga merek lampu mempunyai mutu yang tidak sama)

Pengambilan Keputusan

a. Dengan Membandingkan Statistik Hitung dan Statistik Tabel

Jika Statistik Hitung < Statistik Tabel , maka Ho diterima

Jika Statistik Hitung > Statistik table, maka Ho ditolak

• Statistik Hitung

Dari output di atas terlihat bahwa statistik hitung Kruskal Wallis (sama dengan Chi-Square hitung) adalah 7,20

• Statistik Tabel

Dengan melilhat Chi-Square, untuk df (k-1,3-1=2) dan tingkat signifikan (α) = 5 %, maka didapat statistik table Chi-Square = 5,789 (lihat table Chi-Square)

b. Dengan Menggunakan Probabilitas / Nilai Signifikan

Jika Sig > 0,05 maka Ho diterima

Jika Sig < 0,05 maka Ho ditolak

Sig pada pennelitian ini adalah 0,027 maka lebih kecil dari 0,05 sehingga Ho ditolak jadi keputusannya adalah Ada perbedaan mutu produksi ketiga merek lampu (Ketiga merek lampu mempunyai mutu yang tidak sama).

Statistik Inferensial Parametrik (Uji Perbedaan)

Penggunaan statistik parametric mempunyai syarat data harus berdistribusi normal. uji beda termasuk uji parametric jadi sebelum melakukan uji perbedaan harus dilakukan uji normalitas dan data harus berdistribusi normal. uji beda di sini akan diuji apakah sebuah sampel mempunyai perbedaan nyata dengan sampel yang lain. Uji yang digunakan adalah independent sample t test, paired sample t test, one sample t test.

A. Indepentent Sample t test (Uji t untuk Dua Sample Independent /

Uji t dua sampel Independent pada prinsipnya akan membandingkan rata-rata dari dua grup yang tidak berhubungan satu sama lain, dengan tujuan apakah kedua grup tersebut mempunyai rata-rata yang sama atau. Contoh kasus buka data mann whitney.

Penyelesaian

1. Mengolah Data

Langkah-langkahnya

- File-Open-Data- cari data Mann Whitney
- Klik Analyze- Compare Means- Independent Sample t Test....
- Masukkan tingkat kemampuan pada kotak Test Variable List
- Masukkan **mahasiswa** pada kotak **Grouping Variable**, sehingga tampak di layar sebagai berikut:

🔚 Independent-Samples T Te	est 📃 🔀
	⊥est Variable(s):
	Grouping Variable: mahasiswa(? ?) Define Groups
OK	Aste Reset Cancer Help

Klik tombol **Define Grouping**

Isilah Grouping 1 dengan 1 dan Grouping 2 dengan 2

Sehingga tampak di layar sebagai berikut:

Ĺ	Define Groups	J
	Use specified values	
	Group <u>1</u> : 1	
	Group <u>2</u> : 2	
	◎ <u>C</u> ut point:	
	Cancel Help	

Klik Continue

Klik **ok**

- 2. Menyimpan hasil Output
- 3. Output SPSS Dan Analisisnya

	Grou	p Statist	tics								
	tingkat kemampuan	N	Mean	Std. Deviation	Std. Erro Mean)r					
tingkat kemampuan	PGMI	5	74.00	9.618	4.	301					
	PAI	5	73.60	11.415	5.	105					
		Lev	ene's Test Variar	for Equality of nces				t-test for Equality	of Means		
		Lov	iono'e Toeti	Independ	ent Sampl	es Test					
								Here	Obd Error	95% Confidence Differe	Interval of the
			F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	Lower	Upper
tingkat kemampuan	Equal variances assumed		.184	.680	.060	8	.954	.400	6.675	-14.993	15.793
	Equal variances not assumed				.060	7.776	.954	.400	6.675	-15.071	15.871

Perumusan Masalah

Apakah terdapat perbedaan tingkat kemampuan statistik antara mahasiswa yang berpendidikan PGMI dan PAI?

Untuk menjawab rumusan masalah di atas maka:

Langkah Pertama

Membuka output Independent sample T-test (Signifikan f hitung) untuk menentukan t hitung yang akan kita gunakan untuk menjawab rumusan masalah, mengguanakan equal variances assumed atau menggunakan Equal Variances not Assumed.

Pengambilan Keputusan

Jika Sig Fhitung > 0,05 maka Ho diterima

Jika Sig Fhitung < 0,05 maka Ho ditolak

Hipotesis (Dugaan) untuk uji Sig F test dalam kasus ini

Ho: kedua varian populasi identic (Equal Variance Assumed)

Ha: kedua varian populasi tidak identic (Equal Variance not Assumed)

Keputusan

Terlihat bahwa sig f hitung untuk penghasilan dengan Equal Variance Assumed adalah 0,680. Oleh karena sig Fhitung > 0,05, maka Ho diterima kedua varian populasi identic (Equal Variance Assumed).

Langkah Kedua

Pengambilan Keputusan

Jika Sig t hitung > 0,05 maka Ho diterima Jika Sig t hitung < 0,05 maka Ho ditolak

Hipotesis (Dugaan) untuk uji t test dalam kasus ini

- Ho: Kedua rata-rata populasi identic (rata-rata tingkat kemampuan statistik antara mahasiswa PGMI dan PAI adalah sama)
- Ha: Kedua rata-rata populasi tidak identic (rata-rata hasil tingkat kemampuan statistik antara mahasiswa PGMI dan PAI adalah berbeda)

Karena Sig F hitung mempunyai keputusan Equal Variance Assumed, maka t test sebaiknya menggunakan dasar Equal Variance Assumed maka nilai Sig t hitung 0,954 karena nilai Sig t hitung > 0,05 yang berarti Ho diterima artinya Kedua rata-rata populasi identic (rata-rata tingkat kemampuan statistik antara mahasiswa PGMI dan PAI adalah sama).

B. Paired Sampel t Test (Uji t untuk dua sampel yang berpasangan)

Uji t-Paired digunakan untuk menentukan ada tidaknya perbedaan rata-rata dua sampel bebas. Dua sampel yang dimaksud adalah yang sama namun mempunyai dua data.

Contoh Kasus

Sekolah sedang melaksanakan pelaksanaan bimbingan belajar sore setelah jam pembelajaran pagi dilaksanakan. Pihak sekolah ingin meneliti kefektifan bimbel tersebut. Guru ingin meneliti apakah siswa yang telah mengikuti bimbel benar-benar mempunyai kemampuan yang tinggi terhadap hasil belajar matematika. Sampel yang digunakan adalah 10 siswa yang mengikuti bimbel. Berikut adalah datanya:

Sebelum Bimbel	Sesudah Bimbel
67	90
70	90
82	90
60	50
91	95
77	80
66	75
68	60
70	70
60	70

Penyelesaian

1. Pemasukkan data ke SPSS

- Buka lembar kerja baru klik File-New-Data
- Menampilakan Variabel View untuk mempersiapkan pemasukkan nama dan properti variabel.
- Variabel pertama : sebelum bimbel

Maka isikan:

Name : ketik sebelum bimbel

Type : pilih **Numeric**

Width : pilih 8

Decimal : pilih 0

Label : ketik sebelum bimbel

Value : pilih None

Missing : pilih None

Columns : pilih 8

Align : pilih Right

Measure : pilih Scale

• Variabel kedua : sesudah bimbel

Maka isikan: Name : ketik sesudah bimbel Type : pilih Numeric Width :pilih 8 Decimal : pilih 2 Label : ketik sesudah bimbel Value : pilih none Missing: pilih None Columns: pilih 8 Align: pilih Right Measure : pilih Scale

Sehingga akan tampak di layar sebagai berikut:

	Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure
ľ	sebelum	Numeric	8	2	sebelum <mark>b</mark> imbel	None	None	8	\overline Right	🖋 Scale
	sesudah	Numeric	8	2	sesudah bmbel	None	None	8	≣ Right	🖋 Scale

2. Mengisi Data

Setelah nama variabel didefinisikan, langkah selanjutnya adalah mengisi 10 data sebelum dan sesudah bimbel matematika. Untuk itu, kembalikan tampilan pada **DataView.** Isikan data sehingga akan tampak di layar sebagai berikut:

<u>V</u> iew	<u>D</u> ata	<u>T</u> ransform	Ŀ
🔗 se	belum	🛷 sesudah	
	67.00	90.00	
	70.00	90.00	
	82.00	90.00	
	60.00	50.00	
	91.00	95.00	
	77.00	80.00	
	66.00	75.00	
	68.00	60.00	
	70.00	70.00	
	60.00	70.00	

3. Menyimpan Data

Dari data di atas dapat disimpan, dengan prosedur sebagai berikut:

- Dari menu utama SPSS, pilih menu File-Save As
- Berikan nama file untuk keseragaman berikan nama **paired** dan tempatkan file pada directory yang dikehendaki.

4. Mengolah Data

- Klik Analyze-Compare Means-Paired-Sample T Test
- Masukkan **sebelum** pada kotak **Paired Variables** sehingga tampak di layar sebagai berikut:

t	Paired-Samples T Test		-	time -			×
			Paired V	ariables:			Ontions
	🔗 sebelum bimbel [se		Pair	Variable1	Variable2		
	🔗 sesudah bmbel (se		1	🛷 sebelum	🛷 sesudah		Bootstrap
	•		2				
		*				★★	
	(ок	Paste	Reset Can	cel Help		

klik **Ok**

- 5. Menyimpan hasil Output
- 6. Output SPSS dan Analisisnya

	P	aired San	nples Sta	tistics						
		Mean	N	Std. Deviati	Std. Erro Mean					
Pair 1	sebelum bimbel	71.1000	10	9.723	40 3.074	.81				
	sesudah bmbel	77.0000	10	14.757	30 4.666	67				
	Paired	Samples	Correlatio	ons Correlation	Sig.					
Pair 1	sebelum bimbel & sesudah bmbel		10	.695	.026					
					Paired Samp Paired Differe	les Test				
					Std. Error	95% Confidence Differ	e Interval of the ence			
			Mean	Std. Deviation	Mean	Lower	Upper	t	df	Sig. (2-tailed)
Pair 1	sebelum bimbel - sesudah bmbel	-6	5.90000	10.61917	3.35807	-13.49649	1.69649	-1.757	9	.113

Perumusan Masalah

Apakah terdapat perbedaan prestasi belajar matematika sebelum dan sesudah siswa mengikuti bimbingan belajar?

Hipotesis (Dugaan)

Ho : Tidak ada perbedaan prestasi belajar matematika sebelum dan sesudah siswa mengikuti bimbingan belajar.

Ha : ada perbedaan prestasi belajar matematika sebelum dan sesudah siswa mengikuti bimbingan belajar.

Pengambilan Keputusan

adalah -1,757.

Cara 1

Jika Sig > 0,05 maka Ho diterima Jika Sig < 0,05 maka Ho ditolak

Cara 2

Jika –t table < t hitung < table maka Ho diterima Jika t hitung < -t table dan t hitung > t table maka Ho ditolak Cara 1 dari penelitian di atas bahwa Sig < 0,05 maka Ho ditolak Cara 2 untuk t table kita melihat ditabel t (df-2, dua sisi (0,025))=2,2622 dan t hitung

maka Ho diterima artinya Tidak ada perbedaan prestasi belajar matematika sebelum dan sesudah siswa mengikuti bimbingan belajar.

C. One Sampel t Test (Uji t untuk satu sampel)

Pengujian satu sampel pada prinsipnya ingin menguji apakah nilai tertentu (yang diberikan sebagai pembanding) berbeda secara nyata ataukah tidak dengan rata-rata sebuah sampel.

Contoh Kasus

Contoh kasus mempunyai data yang sama dengan data paired maka buka kembali data paired. Dari kasus tersebut diketahui bahwa rata-rata populasi prestasi belajar matematika sebelum bimbingan belajar adalah 71,1. Ingin diketahui apakah terdapat perbedaan antara prestasi belajar matematika sebelum bimbingan belajar adalah 71,1 dengan prestasi belajar matematika kelompok siswa sekolah lainnya sebelum bimbingan belajar.

Penyelesaian

1. Mengolah Data

Langkah-langkahnya

- Klik File-Open-Data- cari data Paired
- Klik Analyze- Compare Means- One Sample t Test....
- Masukkan sebelum pada kotak Test Variable List
- Karena akan dibandingkan dengan nilai rata-rata yaitu 71,1, maka ketik 71,1 pada **test value**, sehingga tampak di layar sebagai berikut:

t	One-Sample T Test	×
	🖋 sesudah bmbel [se	Test Variable(s):
		Test <u>V</u> alue: 71. <mark>1</mark>
	ОК	2aste Reset Cancel Help

klik **Ok**

- 2. Menyimpan hasil Output
- 3. Output SPSS Dan Analisisnya

	One-S	Sample St	tatistics			
	Ν	Mean	Std. Deviation	Std. Error Mean		
sebelum bimbel	10	71.1000	9.72340	3.07481	_	
			One-Sample	Test		
			les	st value = 71.1		
				Mean	95% Confidence Differ	e Interval of the ence
	t	df	Sig. (2-tailed)	Difference	Lower	Upper
sebelum bimbel	.000	9	1.000	.00000	-6.9557	6.9557

Perumusan Masalah

Apakah terdapat perbedaan antara prestasi belajar matematika sebelum bimbingan belajar adalah 71,1 dengan prestasi belajar matematika kelompok siswa sekolah lainnya sebelum bimbingan belajar.

Cara 1

Jika Sig > 0,05 maka Ho diterima Jika Sig < 0,05 maka Ho ditolak

Cara 2

Jika –t table < t hitung < table maka Ho diterima Jika t hitung < -t table dan t hitung > t table maka Ho ditolak Cara 1 dari penelitian di atas bahwa Sig < 0,05 maka Ho ditolak Cara 2 untuk t table kita melihat ditabel t (df=n-1, dua sisi/0,025)=2,2622 dan t hitung adalah 0.000

Jadi berada pada daerah Ho diterima maka tidak Ada perbedaan antara prestasi belajar matematika sebelum bimbingan belajar adalah (71,1) dengan prestasi belajar matematika kelompok siswa sekolah lainnya sebelum bimbingan belajar.

D.Uji Dengan Menggunakan Penggunaan Cut Point (Titik Potong)

Contoh kasus buka kembali data normalitas diatas

Dari contoh data normalitas mereka yang mempunyai prestasi belajar matematika diatas 70 dan mereka yang mempunyai prestasi belajar matematika di bawah 70 dari dua grup tersebut akan dilihat apakah mereka yang berprestasi matematikanya lebih dari 70 mempunyai rata-rata tingkat IQ yang lebih (tinggi) dibandingkan siswa yang prestasi matematikanya yang kurang 70.

Penyelesaian

1. Mengolah Data

Langkah-langkahnya

- Klik File-Open-Data- cari data Normalitas
- Klik Analyze- Compare Means- Independent Sample t Test....
- Masukkan IQ pada kotak **Test Variables** dan masukkan prestasi matematika **Grouping Variable**, sehingga tampak di layar sebagai berikut:

Independent-Samples T Te	st	X
	Test Variable(s):	Options Bootstrap
ОК Р	Grouping Variable: nilai(70) Define Groups aste Reset Cancel Help]

klik tombol **Deffine Groups**

disini akan dipakai **cut Point**, dan isikan 70, sehingga tampak di layar sebagai berikut:

Define Groups	×
○ Use specified values	
Group <u>1</u> :	
Group <u>2</u> :	
© Cut point 70]
Continue Cancel He	Ip

klik Continue

klik **Ok**

- 2. Menyimpan hasil Output
- 3. Output SPSS Dan Analisisnya

		Grou	o Statistio	s								
	nilai siswa	N	Mean	Std. Deviation	Std. E Mea	irror an						
lq siswa	>= 70	6	125.83	13.197		5.388						
	< 70	4	100.00	.000		.000						
	Independent Samples Test Levene's Test for Equality of Variances t-test for Equality of Means											
	F Sig.				t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confidence Differ Lower	e Interval of the ence Upper	
lq siswa	Equal variand assumed	es		5.102	.054	3.836	8	.005	25.833	6.735	10.303	41.364
	Equal variand assumed	es not				4.795	5.000	.005	25.833	5.388	11.984	39.683

Perumusan Masalah

Apakah yang prestasi belajar matematika dengan nilai 70 dan nilai diatas 70 mempunyai perbedaan terhadap tingkat IQ?

Untuk menjawab pertanyaan rumusan masalah diatas maka:

Langkah Pertama

Membuka output Independent sample T-test (Signifikan f hitung) untuk menentukan t hitung yang akan kita gunakan untuk menjawab rumusan masalah, mengguanakan equal variances assumed atau menggunakan Equal Variances not Assumed.

Pengambilan Keputusan

Jika Sig Fhitung > 0,05 maka Ho diterima

Jika Sig Fhitung < 0,05 maka Ho ditolak

Hipotesis (Dugaan) untuk uji Sig F test dalam kasus ini

Ho: kedua varian populasi identic (Equal Variance Assumed)

Ha: kedua varian populasi tidak identic (Equal Variance not Assumed)

Keputusan

Terlihat bahwa sig F hitung untuk penghasilan dengan Equal Variance Assumed adalah 0,054. H Oleh karena sig Fhitung > 0,05 maka Ho diterima kedua varian populasi identic (Equal Variance Assumed).

Langkah Kedua

Pengambilan Keputusan

Jika Sig t hitung > 0,05 maka Ho diterima Jika Sig t hitung < 0,05 maka Ho ditolak

Hipotesis (Dugaan) untuk uji t test dalam kasus ini

- Ho: Kedua rata-rata populasi identic (yang nilai matematika dibawah 70 dan diatas 70 tidak mempunyai perbedaan terhadap tingkat IQ)
- Ha: Kedua rata-rata populasi tidak identic (yang nilai matematika dibawah 70 dan diatas 70 mempunyai perbedaan terhadap tingkat IQ)

Karena Sig F hitung mempunyai keputusan Equal Variance Assumed, maka sig t test sebaiknya menggunakan dasar Equal Variance Assumed maka nilai Sig t hitung 0,005 yang berarti Ho ditolak artinya Kedua rata-rata populasi tidak identic (yang nilai matematika dibawah 70 dan diatas 70 mempunyai perbedaan terhadap tingkat IQ).

E. Uji ANOVA

Digunakan untuk menguji tiga sampel atau lebih yang tidak saling berhubungan.

<u>Contoh soal 1</u>PT PHILIS memproduksi tiga buah lampu dengan merek X,Y dan Z. Manajer produksi ingin mengetahui apakah ada perbedaan mutu produksi yang nyata antara ketiga merek lampu tersebut. Untuk itu diambil sejunlah sample tertentu masing-masing merek lampu, kemudian diiukur masa hidupnya (menyalakan alat yang sama hingga mati). Datanya sebagai berikut:

Masa (jam)	Merek
400	Merek X
401	Merek X
402	Merek X
404	Merek Y
406	Merek Y
409	Merek Y
395	Merek Z
380	Merek Z
398	Merek Z
400	Merek X
408	Merek X
300	Merek X
400	Merek Y
399	Merek Y
410	Merek Y
420	Merek Z
380	Merek Z
400	Merek Z

Penyelesaian

Langkah-langkahnya

1. Pemasukan data ke SPSS

• Buka lembar kerja baru klik File-New-Data

- Menampilakan Variabel View untuk mempersiapkan pemasukkan nama dan properti variabel.
- Variabel pertama : Masa Maka isikan: Name : ketik Masa **Type** : pilih **Numeric** Width : pilih 8 Decimal : pilih 0 Label : ketik Masa Value : pilih None Missing : pilih None Columns : pilih 8 Align : pilih Right Measure : pilih Scale • Variabel kedua : Merek Maka isikan: Name : ketik Merek Type : pilih Numeric Width :ketik 1 Decimal : pilih 0 Catatan: Desimal: Isikan 0 terlebih dahulu baru Width : isikan 1

Label : ketik Merek

Value : pilihlah ini untuk proses pemberian kode. Klik kotak kecil di kanan sel. Tampil di layar sebagai berikut:

Value Labels	×
Value Labels Value: Label:	Spelling
Add Change Remove	
OK Cancel Help	

Pengisian Value : ketik 1 Label: ketik Merek X Klik Add Value: ketik 2 Label : ketik Merek Y Klik Add Value: ketik 3 Label : ketik Merek Y Klik Add Klik Ok Missing: pilih None Columns: pilih 8 Align: pilih Right Measure : pilih Scale

Sehingga akan tampak di layar sebagai berikut:

Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure
masa	Numeric	8	0	masa	None	None	8	🗃 Right	🖋 Scale
merek	Numeric	1	0	merek	{1, merek X}	None	8	≣ Right	🖋 Scale

2. Mengisi Data

Setelah nama variabel didefinisikan, langkah selanjutnya adalah mengisi 18 data penilaian merek lampu X,Y,Z. Untuk itu, lembalikan tampilan pada **DataView.** Isikan data sehingga akan tampak di layar sebagai berikut:

*Untitled4	[DataSet	t4] - IBM	SPSS Statistics	Dat
<u>F</u> ile <u>E</u> dit	<u>V</u> iew	<u>D</u> ata	<u>T</u> ransform	A
20 :				
	🥏 n	nasa	🛷 merek	
1		400	merek X	
2		401	merek X	
3		402	merek X	
4		404	merek Y	
5		406	merek Y	
6		409	merek Y	
7		395	merek Z	
8		380	merek Z	
9		398	merek Z	
10		400	merek X	
11		408	merek X	
12		300	merek X	
13		400	merek Y	
14		399	merek Y	
15		410	merek Y	
16		420	merek Z	
17		380	merek Z	
18		400	merek Z	

3. Menyimpan Data

Dari data di atas dapat disimpan, dengan prosedur sebagai berikut:

- Dari menu utama SPSS, pilih menu File-Save As
- Berikan nama file untuk keseragaman berikan nama **onewayanova** dan tempatkan file pada directory yang dikehendaki.

4. Mengolah Data

- Klik Analyze-Compare Means- One Way ANOVA...
- Masukkan masa pada kotak Dependent List
- Masukkan merek pada kotak factor, sehingga akan tampak di layar sebagai berikut:

Dependent List:	Contrasts Post <u>H</u> oc Options Bootstrap
Eactor:	

klik tombol **Option**

pada statistics piih Descriptive dan homogenelty of variance test pada Missing Value pilih Exclude cases analysis by analysis schingga tampak di layar sebagai berikut:

klik Continue

klik tombol **Post Hoc ...** pilih **Bonferroni** dan **Turkey** sehingga tampak pada layar sebagai berikut:

Cone-Way ANOVA: Post Hoc Multiple Comparisons					
F Equal Variances /	ssumed				
ESD	S-N-K Maller-Duncan				
Bonferroni	Type I/Type II Error Ratio: 100				
🔲 S <u>i</u> dak	Tu <u>k</u> ey's-b Dunn <u>e</u> tt				
Scheffe Scheffe	Duncan Control Category : Last				
🔲 <u>R</u> -E-G-W F	Test				
🔲 R-E-G-W <u>Q</u>	<u>Gabriel</u> <u>Gabriel</u> <u>Control</u> <u>Control</u>				
r Equal Variances I	lot Assumed				
Ta <u>m</u> hane's T2	🔲 Dunnett's T <u>3</u> 🔲 G <u>a</u> mes-Howell 📄 D <u>u</u> nnett's C				
Significance level: 0.05					
	Cancel Help				

klik Continue

klik **OK**

- 5.
- Menyimpan hasil Output Output SPSS dan Analisisnya 6.

				Descript	ives			
masa								
					95% Confider Me	nce Interval for ean		
	Ν	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
merek)	× 6	385.17	41.830	17.077	341.27	429.06	300	408
merek	Y 6	404.67	4.546	1.856	399.90	409.44	399	410
merek 2	Z 6	395.50	14.883	6.076	379.88	411.12	380	420
Total	18	395.11	25 555	6.023	392.40	407.92	300	420
Total	10	555.11	20.000	0.023	302.40	407.02	300	420
10101	10	Test of H	omogeneity o	f Variance	5 S	407.02	300	420
10101	10	Test of H	omogeneity o Levene Statistic	f Variance	df2	Sig.	300	420
masa	Based on Me	Test of H	omogeneity o Levene Statistic 3.347	f Variance	df2	Sig. .063	300	420
masa	Based on Me Based on Me	Test of H an dian	omogeneity o Levene Statistic 3.347	f Variance df1 7 2 3 2	df2 15	Sig. .063 .573	300	420
masa	Based on Me Based on Me Based on Me with adjusted	Test of H an dian dian and df	omogeneity o Levene Statistic 3.347 .578	f Variance	df2 15 15 15 15 15 15	Sig. .063 .573 .591	300	420

	ANOVA								
masa									
	s	dum of quares	df	Mean	Square		F	Sig.	
Between Gro	ups	1142.111	2	!	571.056		.860	.443	
Within Group	s	9959.667	15	6	663.978				
Total	1	1101.778	17						
Dependent	'ariable: m	asa	Multi	ple C	omparis	ons			
			Mear	1				95% Confid	ence Interval
	(I) merek	(J) merek	J)	Le (I-	Std. Erro	r	Sig.	Lower Bound	Upper Bound
Tukey HSD	merek X	merek Y	-19	9.500	14.87	7	.411	-58.14	19.14
		merek Z	-1(0.333	14.87	7	.770	-48.98	28.31
	merek Y	merek X	19	9.500	14.87	7	.411	-19.14	58.14
		merek Z	9	9.167	14.87	7	.814	-29.48	47.81
	merek Z	merek X	1(0.333	14.87	7	.770	-28.31	48.98
		merek Y	- (9.167	14.87	7	.814	-47.81	29.48
Bonferroni	merek X	merek Y	-19	9.500	14.87	7	.629	-59.57	20.57
		merek Z	-10	0.333	14.87	7	1.000	-50.41	29.74
	merek Y	merek X	19	9.500	14.87	7	.629	-20.57	59.57
		merek Z	9	9.167	14.87	7	1.000	-30.91	49.24
	merek Z	merekX	10	0.333	14.87	7	1.000	-29.74	50.41
		merek Y	- (9.167	14.87	7	1.000	-49.24	30.91

Homogeneous Subsets					
	m	asa			
			Subset for alpha = 0.05		
	merek	м	1		
Tukey HSD ^a	merek×	6	385.17		
	merek Z	6	395.50		
	merek Y	6	404.67		
	Sig.		.411		
Means for groups in homogeneous subsets are displayed.					
a. Uses Ha	armonic Mea	n Sample Si	ze = 6.000.		

Output Bagian Pertama (Group Statistics)

Pada bagian pertama terlihat ringkasan statistik dari ketiga sample. Sebagai contoh adalah deskripsi dari kelompok merek X:

- Rata-rata masa adalah 385,17 jam
- Masa Minimum adalah 300 dan maksimum 408
- Standar deviasi atau standar penyimpangan dari nilai rata-rata adalah 41,830
- Dengan tingkat kepercayaan 95% atau signifikansi 5%, rata-rata masa adalah pada range 341,27 jam sampai 429,06

Begitu juga selanjutnyaa deskriptif untuk merek Y,Z

Output Bagian Kedua (Test of Homogeneity of Variances)

Analisis ini bertujuan untuk menguji berlaku tidaknya asumsi untuk ANOVA, yaitu apakahketiga sample mempunyai varians yang sama.

Hipotesis

Ho: ketiga varians populasi adalah identic

Ha: ketiga varians populasi tidak identic

Pengambilan keputusan:

Jika Sig > 0,05 maka Ho diterima

Jika Sig < 0,05 maka Ho ditolak

Keputusan:

Terlihat bahwa Levene Test hitung adalah 3,347 dengan nilai probabilitas/sig 0,063. Oleh karena probabilitas/sig >0,05 maka Ho diterima atau ketiga varians populasi adalah identic. Sehingga analisis selanjutnya dapat dilakukan.

Output Bagian Ketiga (ANOVA)

Setelah ketiga varians terbukti sama, baru dilakukan uji ANOVA untuk menguji apakah ketiga sample mempunyai rata-rata (mean) yang sama.

Rumusan Masalah:

Apakah terdapat perbedaan masa antara merek X, merek Y, dan merek Z?

Hipotesis:

Ho: Tidak terdapat perbedaan masa antara merek X,merek Y, merek Z

Ha: Terdapat perbedaan masa antara merek X,merek Y, merek Z

Pengambilan Keputusan:

Jika Sig > 0,05 maka Ho diterima

Jika Sig < 0,05 maka Ho ditolak

Atau

Jika F hitung < F table maka Ho diterima

Jika F hitung > F table maka Ho ditolak

Keputusan:

Probabilitas/Sig sebesar 0,443. Oleh karena probabilitas/sig > 0,05 maka Ho diterima.

Terlihat bahwa F hitung adalah 0,860, sedang F table (V1 = jumlah merek-1) 3-1=2 dan (V2= jumlah kasus-kasus merek) 18-3=15 dengan derajat kesalahan 5%, lihat di table F maka nilai F table adalah 3,682. Tidak terdapat perbedaan masa antara merek X,merek Y, merek z

Output Bagian Keempat (Post Hoc Test)

Membahas mana saja kelompok merek yang berbeda dan mana yang tidak berbeda.

Tukey test dan Bonferroni test

Merek X dan Merek Y

Apakah terdapat perbedaan masa yang antara merek X dan merek Y?

Hipotesis:

Ho: Tidak terdapat perbedaan yang nyata antara merek X dan merek Y

Ha: Terdapat perbedaan yang nyata antara merek X dan merek Y

Merek X dan merek Y mempunyai nilai sig 0,411 berarti > 0,05 sehingga Ho diterima yang artinya tidak terdapat perbedaan masa yang nyata antara merek X dan merek Y.

Merek X dan merek Z

Hipotesis:

- Ho: Tidak terdapat perbedaan yang nyata antara merek X dan merek Z
- Ha: Terdapat perbedaan yang nyata antara merek X dan merek Z

Merek X dan merek Z mempunyai nilai sig 0,770 berarti >0,05 sehingga Ho diterima yang artinya tidak terdapat perbedaan masa yang nyata antara merek X dan merek Z. Begitu seterusnya.

Output Bagian Kelima (Homogeneous Subset)

Homogeneous subset akan mencari grup mana saja yang mempunyai perbedaan rata-rata yang tidak berbeda secara signifikan.

• Pada subset 1 terlihat bahwa grup dengan merek X, merek Y, merek Z dikatakan tidak mempunyai perbedaan yang nyata satu dengan yang lainnya.

Perhatian :

Jika pada output bagian kedua (test of Homogeneity of variances)mempunyai hasil Ho ditolak yang artinya ketiga variable tidak identic, maka asumsi ANOVA tidak terpenuhi. Oleh kartena varian tidak sama, maka untuk melanjutkan analisis, salah satu jenis data dependen variable (masa) ke bentuk tertentu (logaritmik,reiuprokal,square).

Contoh Soal diambil dari singgih santoso (2005)

Daerah penjualan	Sales
Jakarta	25
Jakarta	26
Jakarta	23
Jakarta	22
Jakarta	22
Jakarta	22
Jakarta	24
Jakarta	25
Jakarta	29
Jakarta	23
Jakarta	26
Jakarta	22
Jakarta	21
Jakarta	26
Jakarta	30
Jawa Barat	30
Jawa Barat	21
Jawa Barat	45
Jawa Barat	35
Jawa Barat	22
Jawa Barat	49
Jawa Barat	36
Jawa Barat	29
Jawa Barat	48
Jawa Barat	39

Jawa Barat	30
Jawa Barat	47
Jawa Barat	36
Jawa Barat	25
Jawa Barat	44
Jawa Tengah	60
Jawa Tengah	65
Jawa Tengah	60
Jawa Tengah	54
Jawa Tengah	58
Jawa Tengah	53
Jawa Tengah	51
Jawa Tengah	52
Jawa Tengah	55
Jawa Tengah	60
Jawa Tengah	65
Jawa Tengah	64
Jawa Tengah	20
Jawa Tengah	66
Jawa Tengah	54

Hasil output yang perlu dilihat

Test of Homogeneity of Variances

Sales

Lavene Statistic	Df1	Df2	Sig
4,067	2	42	,024

Karema nilai sig ?(0,024) < 0,05 sehingga Ho ditolak, dimana ketiga variable tidak identic, maka asumsi ANOVA tidak terpenuhi. Leh karena varian tidak sama, maka untuk melanjutkan analisis, salah satu cara adalah mengubah (transform) jenis data dependen variabel (sales) ke bentuk tertentu (logaritmik, reciprocal, square). Caranya:

1. Mencari bentuk Transformasi:

Untuk mencari bentuk transformasi, langkah-langkahnya adalah sebagai berikut:

- a. Pilih **analyze** pilih **descriptive statistics** pilih **explore**
- b. Pada kotak Dependent List, isikan variabel sales
- c. Pada kotak Factor List, isikan variabel **daerah penjualan**

- d. Pada bagian displays, pilih **plots**
- e. Pilih tombol **plots**
- f. Pada bagian Box-Plot, pilih **none**
- g. Pada bagian spread vs level with levene test, pilih **power estimation**
- h. Tekan **continue** untuk melanjutkan
- i. Tekan **ok**

Maka diperoleh hasil

Dibawah ini terdapat table yang telah disediakan

Transformasi	Slope	Power
Square	1	2
Tidak perlu transformasi	0	1
Square root (akar)	0,5	0,5
Logaritma	1	0
Reciprocal of square root	1,5	-0,5
Reciprocal	2	-1

Slope yang dihasilkan sebesar 1,090 dan nilai power adalah -0,090, maka dengan melihat table yang sudah disediakan diatas sebagai standar maka data kita transformasikan dalam bentuk logaritmik.

Untuk kasus ANOVA yang variannya tidak sama, bisa digunakan transformasi logaritma atau square (akar)

2. Transformasi Data

Langkah-langkahnya:

- Masih tetap mengguanakan data yang sama, pilih menu Transform pilih
 Compete
- b. Isikan pada target variables adalah tr_sales
- c. Isikan pada numeric ekspression adalah LG10(x2), sehingga tampak sebagai berikut:

Compute Variable			×
Compute Variable Iarget Variable: Ir_sales Type & Label Ø daerah penjualan [d ø sales		Numgric Expression: LG10(/2) +	Function group: All Arithmetic CDF & Noncentral CDF Conversion Current Date/Time Date Arithmetic Date Creation
(optional case selectio	on cond	tion)	
		OK Paste Reset Cancel Help	,

Klik ok

sehingga pada data view akan tampak sebagai berikut:

🛷 daerah	🛷 sales	🛷 tr_sales	
jawa barat	29	1.46	
jawa barat	48	1.68	
jawa barat	39	1.59	
jawa barat	30	1.48	
jawa barat	47	1.67	
jawa barat	36	1.56	
jawa barat	25	1.40	
jawa barat	44	1.64	
jawa tengah	60	1.78	
jawa tengah	65	1.81	
jawa tengah	60	1.78	
jawa tengah	54	1.73	
jawa tengah	58	1.76	
jawa tengah	53	1.72	
jawa tengah	51	1.71	
jawa tengah	52	1.72	
jawa tengah	55	1.74	
jawa tengah	60	1.78	
jawa tengah	65	1.81	
jawa tengah	64	1.81	
jawa tengah	20	1.30	
jawa tengah	66	1.82	
jawa tengah	54	1.73	

3. Data yang baru diolah menggunakan One Way ANOVA untuk diperoleh hasil yang sesungguhnya.

- a. Klik analyze-Compare Means- One way ANOVA..
- b. Masukkan **tr_sales** pada kotak **dependent list**

Masukkan **daerah penjualan** pada kotak **factor**, sehingga tampak di layar sebagai berikut:

One-Way ANOVA	X
sales (sales)	Dgpendent List:
ОК	Eactor: daerah penjualan [d Paste Reset Cancel Help

Klik tombol option

Pada **statistics** pilih **descriptive** dan **homogeneity of variance test** Pada **missing value** pilih **exclude cases analysis by analysis** Sehingga tampak di layar sebagai berikut:

1	😭 One-Way ANOVA: Options 📃 🔀	
ſ	- Statistics	
	Descriptive	
	Eixed and random effects	
	Homogeneity of variance test	
	Brown-Forsythe	
	Welch	
	Means plot	
	Missing Values	
	Exclude cases analysis by analysis	
	© Exclude cases listwise	
	Cancel Help	

Klik continue

Klik tombol **post Hoc...** pilih **Bonferroni** dan **tukey** Sehingga tampak di layar sebagai berikut:

	Assumed	
		waller-Duncan
Bonterroni	икеу	Type II Error Ratio: 100
📃 S <u>i</u> dak	Tu <u>k</u> ey's-b	Dunn <u>e</u> tt
Scheffe	Duncan	Control Category: Last
R-E-G-W F	🔲 <u>H</u> ochberg's GT2	Test
🔲 R-E-G-W <u>Q</u>	Cabriel	O <u>2</u> -sided O < C <u>o</u> ntrol O > Co <u>n</u> trol
Equal Variances Not Assumed Tamhane's T2 Dunnett's T <u>3</u> Games-Howell Dunnett's C		
Significance level: 0.05		
Output SPSS Oneway

Descriptives

	Ν	Mean	Std.	Std.Error	95% Confidence		minimum	maximum
			Dev		Interval for	or mean		
					Lower	Upper		
					Bound	bound		
Jakarta	15	1,3851	,04614	,01191	1,3595	1,4106	1,32	1,48
Jawa	15	1,5378	,12164	,03141	1,4705	1,6052	1,32	1,69
barat								
Jawa	15	1,7336	,12545	,03239	1,6641	1,8030	1,30	1,82
tengah								
total	45	1,5521	,17664	,02633	1,4991	1,6052	1,30	1,82

Test of homogeneity of variances

Tr_sales

Lavene statistic	Df 1	Df 2	sig
2,071	3	42	,479

ANOVA

Tr-sales

	Sum of	Df	Mean square	F	Sig
	squares				
Between	-,916	2	,458	42,047	,000,
Groups					
Within	457	42	,011		
Groups					
Total	1,373	44			

Post Hoc Test

Multiple Comparisons

Dependent Variable masa

						95% Co	nfidence
	(i)daerah	(j)daerah	Mean			Inte	rnal
	penjualan	penjualan	Differences	Std.		Lower	Upper
	roti	roti	(i.j)	Error	Sig.	Bond	Bomd
Tukey HSD							
		Torres house	15075 *	02010	001	0452	0602
		Jawa barat	,15275 *	,03810	,001	-,2453	-,0602
		Jawa					
	jakarta	tengah	-,34850 *	,03810	,000	-,4411	-,0602
		Jakarta	,15275 *	,03810	,001	,0602	,2453
		Jawa					
	Jawa barat	tengah	-,19575 *	,03810	,000	-,2883	-,1032
	Jawa						
	tengah	Jakarta	,34850 *	,03810	,000	,2559	,4411

		Jawa barat	,19575 *	,03810	,000	,1032	,2883
Bonferroni		Jawa barat	-,15275 *	,03810	,001	-,2478	-,0511
		Jawa					
	Jakarta	tengah	-,34850 *	,03810	,000	-,4435	-,2535
		Jakarta	,15275 *	,03810	,001	,0577	,2478
		Jawa					
	Jawa barat	tengah	-,19575 *	,03810	,000	-,2908	-,1007
	Jawa	Jakarta	, 34856 *	,03810	,001	,2535	,4435
	tengah	Jawa barat	,19575 *	,03810	,000	,1007	,2908

Homogeneous Subsets Masa

Masa					
			Sub	set for alpha α	=0,5
	Daerah penjualan roti	Ν	1	2	3
Tukey Hsd	Jakarta Jawa Barat Jawa Tengah Sig	15 15 15	1,3851 1,000	1,5378 1,000	1,7336 1,000

Output Bagian Pertama (Group Statistics)

Pada bagian eprtama terlihat ringkasan statistic deskriptif dari ketiga sample yaitu daerah Jakarta, jawa barat, dan jawa tengah.

Output Bagian Kedua (Test of Homogeneity of Variances)

Analisis ini bertujuan untuk menguji berlaku atau tidaknya asumsi untuk ANOVA, yaitu

apakah ketiga sample mempunyai varians yang sama.

Hipotesis :

Ho: Ketiga varians populasi adalah identic

Ha: ketiga varians populasi adalah tidak identic

Pengambilan Keputusan:

Jika Sig > 0,05 maka Ho diterima

Jika Sig < 0,05 maka Ho ditolak

Kepuputusan:

Terlihat bahwa Levene Test hitung adalah 2,701 dengan nilai probabilitas 0,079. Oleh karena probabilitas/sig > 0,05 maka Ho diterima atau ketiga varians populasi adalah identic. Sehingga analisis selanjutnya dapat dilakukan.

Output Bagian Ketiga (ANOVA)

Setelah ketiga varians terbukti sama, baru dilakukan uji ANOVA untuk menguji apakah ketiga sample mempunyai rata-rata (mean) yang sama.

Rumusan Masalah:

Apakah terdapat perbedaan penjualan antara Jakarta, Jawa barat, Jawa tengah?

Ho: Tidak terdapat perbedaan penjualan antara Jakarta, jawa barat, jawa tengah
Ha: terdapat perbedaan penjualan antara Jakarta, jawa barat, jawa tengah
Pengambilan Keputusan :
Jika Sig > 0,05 maka Ho diterima
Jika Sig < 0,05 maka Ho ditolak
Atau
Jika F hitung < F table maka Ho diterima
Jika F hitung > F table maka Ho ditolak

Keputusan:

Probabilitas/Sig sebesar 0,000. Oleh karena probabilitas/sig < 0,05 maka Ho ditolak.

Terlihat bahwa F hitung adalah 0,860, sedang F table (V1 = jumlah merek-1) 3-1=2 dan (V2= jumlah kasus-kasus merek) 45-3=42 dengan derajat kesalahan 5%, lihat di table F maka nilai F table adalah 3,220. Fhitung terdapat perbedaan penjualan antara Jakarta, Jawa barat dan Jawa tengah

Output Bagian Keempat (Post Hoc Test)

Membahas mana saja kelompok daerah yang berbeda dan mana yang tidak berbeda.

Tukey test dan Bonferroni test

Daerah Jakarta dengan Jawa Barat

Apakah terdapat perbedaan penjualan yang nyata antara daerah penjualan Jakarta dengan Jawa Barat?

Hipotesis:

Ho: Tidak terdapat perbedaan penjualan antara Jakarta dengan Jawa Barat

Ha: Terdapat perbedaan penjualan antara Jakarta dengan Jawa Barat

Merek X dan merek Y mempunyai nilai sig 0,411 berarti > 0,05 sehingga Ho diterima yang artinya tidak terdapat perbedaan masa yang nyata antara merek X dan merek Y.

Merek X dan merek Z

Hipotesis:

- Ho: Tidak terdapat perbedaan yang nyata antara merek X dan merek Z
- Ha: Terdapat perbedaan yang nyata antara merek X dan merek Z

Perbedaan penjualan antara Jakarta, Jawa Barat mempunyai nilai sig 0,001 berarti < 0,05 sehingga Ho ditolak yang artinya terdapat perbedaan penjualan antara Jakarta, Jawa Barat. Dimana perbedaanya (mean difference) sebesar 0,15275 begitu seterusnya.

Output Bagian Kelima (Homogeneous Subset)

Homogeneous subset akan mencari grup mana saja yang mempunyai perbedaan rata-rata yang tidak berbeda secara signifikan.

• Ketiga daerah penjualan yaitu Jakarta, Jawa Barat, Jawa Tengah mempunyai perbedaan yang nyata dalam penjualan.

Bagian 4 :

Korelasi

Korelasi merupakan salah satu statistic infarensi yang akan menguji apakah dua variable atau lebih yang ada mempunyai hubungan atau tidak. Terdapat tiga penggolongan berdasarkan jenis data dalam uji korelasi yaitu sebagai berikut :

- Jika data semua variable merupakan data nominal (contoh data nominal : jenis kelamin, umur, pendidikan) maka dipergunakan uji koefisien cramer
- Jika data semua variable merupakan data ordinal (contoh data ordinal : pendapat tentang kepuasan pelanggan), dapat juga satu variable merupakan data ordinal dan lainnya data rasio maka digunakan uji kendall, dapat juga menggunakan uji spearman.
- Jika data semua variable merupakan data rasio (contoh data rasio : penjualan) maka dipergunakan kendall,dapat juga menggunakan uji spearman.

Uji korelasi bertujuan untuk menguji hubungan antara dua variable dapat dilihat dengan tingkat signifikan, jika ada hubungannya maka akan dicari seberapa kuat hubungan tersebut. Keeratan hubungan ini dinyatakan dalam bentuk koefisien korelasi.

Tingkat signifikan ini dinyatakan untuk menyatakan apakah dua variable mempunyai hubungan dengan syarat sebagai berikut :

Jika sig > 0,05 maka Ho diterima artinya tidak terdapat hubungan

Jika sig < 0,05 maka Ho ditolak artinya terdapat hubungan

Nilai koefisien korelasi merupakan nilai yang digunakan untuk mengukur kekuatan suatu hubungan antar variabel. Koefisien korelasi memiliki nilai antara -1 hingga +1. Sifat nilai koefisien korelasi antara plus (+) atau minus (-). Makna sifat korelasi :

- Korelasi positif (+) berarti bahwa jika variable x1 mengalami kenaikan maka variable x2 juga akan mengalami kenaikan, begitu sebaliknya.
- Korelasi negative (-) berarti bahwa jika variable x1 mengalami penurunan maka variable x2 juga akan mengalami kenaikan, begitu sebaliknya.

Sifat korelasi akan menentukan arah dari korelasi. Keeratan korelasi dapat dikelompokkan sebagai berikut:

- 1. 0,00 sampai 0,20 berarti korelasi memiliki keeratan sangat lemah
- 2. 0,21 sampai 0,40 berarti korelasi memiliki keeratan lemah
- 3. 0,41 sampai 0,70 berarti korelasi memiliki keeratan kuat
- 4. 0,71 sampai 0,90 berarti korelasi memiliki keeratan sangat kuat
- 5. 0,91 sampai 0,99 berarti korelasi memiliki keeratan kuat sekali
- 6. 1 berarti korelasi sempurna

A. Uji korelasi koefisien cramer (Data Nominal)

Uji korelasi koefisien cramer bertujuan untuk menguji hubungan antara dua variable yang berdata nominal dapat dilihat dengan tingkat signifikan Phi, Cramer's V, Contingency Coeffisien. Data nominal merupakan data kategori tapi tidak ada tingkatannya (pemberian symbol angka tidak ada tingkatannya).

Contoh soal

Ingin diketahui apakah ada korelasi diantara pengalaman kerja dengan usia seseorang.

Dimana :

- 1 = tidak berpengalaman
- 2 = berpengalaman

Usia :

- 1 = 20-30 tahun
- 2 = 31-41 tahun

3 = 42-52 tahun

Berikut datanya:

Pengalaman (X1)	Usia(X2)
Berpengalaman	42 tahun
Berpengalaman	50 tahun
Berpengalaman	45 tahun
Berpengalaman	46 tahun
Tidak berpengalaman	23 tahun
Tidak berpengalaman	25 tahun
Berpengalaman	49 tahun
Tidak berpengalaman	20 tahun
Berpengalaman	23 tahun
Tidak berpengalaman	25 tahun

Penyelesaian :

- 1. Pemasukan Data Ke SPSS
 - Buka lembar kerja baru klik File-New-Data
 - Menampilakan Variabel View untuk mempersiapkan pemasukkan nama dan properti variabel.
 - Variabel pertama : Pengalaman X1

Maka isikan:

Name : ketik Pengalaman

Type : pilih Numeric

Width : pilih 8

Decimal : pilih 0

Label : ketik pengalaman

Value : pilihlah ini untuk proses pemberian kode. Klik kotak kecil di kanan sel. Tampil di layar sebagai berikut:

Value Labels	X
Value Labels	
	Spelling
	-
Add	
Change	
Remove	
OK Cancel Help	

Pengisian

Value : ketik 1Label: ketik tidak berpengalamanKlik AddValue: ketik 2Label : ketik berpengalamanKlik AddMissing : pilih NoneColumns : pilih 8Align : pilih RightMeasure : pilih ScaleVariabel kedua : Usia X2

Maka isikan:

Name : ketik usia

Type : pilih Numeric

Width :ketik 8

Decimal : pilih 0

Label : ketik usia

Value : pilihlah ini untuk proses pemberian kode. Klik kotak kecil di kanan sel. pengisian

Value : ketik 1 Label: ketik 20-30 tahun Klik Add Value: ketik 2 Label : ketik 31-41 tahun Klik Add Value: ketik 3 Label : ketik 42-52 tahun Klik Add Klik Ok Missing: pilih None Columns: pilih 8 Align: pilih Right Measure : pilih Scale

Sehingga akan tampak di layar sebagai berikut:

	Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure
Х	(1	Numeric	8	0	pengalaman	{1, tidak ber	None	8	≣ Right	🖋 Scale
Х	(2	Numeric	8	0	usia	{1, 20-30 ta	None	8	≣ Right	🖋 Scale

2. Mengisi Data

Setelah nama variabel didefinisikan, langkah selanjutnya adalah mengisi 10 data pengalaman dan usia. Untuk itu, lembalikan tampilan pada **DataView.** Isikan data sehingga akan tampak di layar sebagai berikut:

✓ X1	I X2
berpengalaman	31-41 tahun
tidak berpengalaman	20-30 tahun
tidak berpengalaman	20-30 tahun
berpengalaman	31-41 tahun
tidak berpengalaman	20-30 tahun
berpengalaman	20-30 tahun
tidak berpengalaman	20-30 tahun

3. Menyimpan Data

Dari data di atas dapat disimpan, dengan prosedur sebagai berikut:

- Dari menu utama SPSS, pilih menu File-Save As
- Berikan nama file untuk keseragaman berikan nama **korelasi cramer** dan tempatkan file pada directory yang dikehendaki.

4. Mengolah Data

- Klik Analyze-Descriptive Statistics- Crosstab
- Pada kotak Row(s), masukkan variable pengalaman
- Pada kotak Column(s), masukkan variable usia
- Klik pada tombol **Cells...** pada counts pilih **observed** dan **Expected**, sehingga akan tampak di layar sebagai berikut:

Crosstabs: Cell Display	
Counts Qbserved Expected Hide small counts Less than 5	Z-test Compare column proportions Adjust p-values (Bonferroni method)
Percentages Bow Column Total Noninteger Weights - Round cell counts Truncate cell counts No adjustments	Residuals Unstandardized Standardized Adjusted standardized Round case weights Truncate case weights

klik Continue

Klik pada tombol Statistics... pada nominal pilih **Contingency coefficient** dan **Phi and cramer's V**. sehingga tampak di layar sebagai berikut:

Crosstabs: Statistics	×				
Chi-square	Correlations				
Nominal	Ordinal				
Contingency coefficient	🔲 <u>G</u> amma				
Phi and Cramer's V	🔲 Somers' d				
🔲 Lambda	🔲 Kendall's tau- <u>b</u>				
Uncertainty coefficient	Kendall's tau- <u>c</u>				
Nominal by Interval	🔲 <u>K</u> appa				
🛅 <u>E</u> ta	🔲 R <u>i</u> sk				
	McNemar				
Cochran's and Mantel-Haenszel statistics					
Test common odds ratio equals: 1					
Cancel Help					

klik Continue

Klik Ok

- 5. Menyimpan hasil Output
- 6. Output SPSS dan Analisisnya

		Case	Processin	ıg Sumi	nary				
Cases									
		Valid		Miss	ing		Tot	tal	
		N P	ercent	N	Percent	1	N	Perce	nt
pengalaman *	usia	10 1	00.0%	0	0.0%		10	100.0	1%
		pengal	aman * us	ia Cros	stabulatio	on usia un	a 31-41 1	tahun	Total
pengalaman	tidak	bernengalama	n Count			4		0	4
p g	pengalaman daak berpengalaman		Expected Co			2.0		2.0	4.0
berpengalaman		Count			1		5	6	
		-	Expecte	d Count	:	3.0		3.0	6.0
Total			Count			5		5	10
			Expecte	d Count	:	5.0		5.0	10.0
		Symmetr	ic Measur	es Value	Appro	ximate	9		
Nominal by No	minal	Phi		.81	6	.01	0		
Crar		Cramer's V	Cramer's V		6	.010			
		Contingency	Coefficient	.63	2	.01	0		
N of Valid Cas	es			1	0				

Perumusan Masalah

Apakah terdapat hubungan antara pengalaman dan usia?

Hipotesis (dugaan)

Ho: tidak terdapat hubungan antara pengalaman dan usia

Ha : terdapat hubungan antara pengalaman dan usia

Keputusan

Jika Sig > 0,05 maka Ho diterima

Jika Sig $<0{,}05$ maka Ho
 ditolak

Pengambilan keputusan

Untuk menjawab perumusan masalah diatas, maka :

Nilai sig baik pada phi, cramer's V, Contingency coefisien semuanya (0,010) < 0,05 maka Ho ditolak artinyaterdapat hubungan antara pengalaman dan usia

B. Uji Korelasi Kendall

Uji korelasi kendall bertujuan untuk menguji hubungan antara dua variable yang berdata ordinal, dapat juga salah satu data ordinal dan lainnya nominal maupun rasio. Untuk mengetahui terdapat hubungan atau tidak dapat dilihat dari nilai sig. dan seberapa besar hubungannya dapat dilihat dengan nilai r.

Contoh Soal

Ingin diketahui apakah ada korelasi diantara kepuasan konsumen dengan lokasi bank artha Media.

Dimana :

Kepuasan konsumen dan lokasi :

- 1= sangat tidak puas
- 2= tidak puas
- 3= puas
- 4= sangat puas

Data kategorikal ini semakin puas angka semakin tinggi

Kepuasan konsumen X1	Lokasi X2		
Puas	Puas		
Puas	Puas		
Sangat puas	Puas		
Puas	Puas		
Puas	Puas		
Puas	Puas		
Sangat puas	Sangat puas		
Sangat puas	Sangat puas		
Tidak puas	Tidak puas		
Tidak puas	Tidak puas		

Data tersebut kita kasih kode, jadi saat kita masukkan ke data view data ini yang dimasukkan adalah sebagai berikut :

Kepuasan konsumen X1	Lokasi X2
3	3
3	3
4	3
3	3
3	3
3	3
4	4
4	4
2	2
2	2

Penyelesaian

Langkah-langkahnya:

- 1. Pemasukan Data Ke SPSS
 - Buka lembar kerja baru klik File-New-Data
 - Menampilakan Variabel View untuk mempersiapkan pemasukkan nama dan properti variabel.
 - Variabel pertama : kepuasan konsumen X1

Maka isikan:

Name : ketik X1

Type : pilih Numeric

Width : pilih 8

Decimal : pilih 0

Label : ketik kepuasan konsumen

Value : pilihlah ini untuk proses pemberian kode. Klik kotak kecil di kanan sel. Tampil di layar sebagai berikut:

Value Labels	×
Value Labels	
	Spelling
Add Change Remove	
OK Cancel Help	

Pengisian

Value : ketik 1 Label: ketik sangat tidak puas Klik Add Value: ketik 2 Label : ketik tidak puas Klik Add Value: ketik 3 Label : ketik puas Klik Add Value: ketik 4 Label : ketik sangat puas Klik Add Missing : pilih None Columns : pilih 8 Align : pilih Right Measure : pilih Scale • Variabel kedua : lokasi X2 Maka isikan: Name : ketik X2 Type : pilih Numeric Width :ketik 8 Decimal : pilih 0 Label : ketik lokasi Value : pilihlah ini untuk proses pemberian kode. Klik kotak kecil di kanan sel. pengisian Value : ketik 1 Label: ketik sangat tidak puas Klik Add Value: ketik 2 Label : ketik tidak puas Klik Add Value: ketik 3 Label : ketik puas Klik Add Value: ketik 4 Label : ketik sangat puas Klik Add

Klik **Ok Missing:** pilih **None Columns:** pilih **8 Align:** pilih **Right Measure :** pilih **Scale**

Sehingga akan tampak di layar sebagai berikut:

					-	<u></u>				
	Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure
1	X1	Numeric	8	0	kepuasan kons	{1, sangat ti	None	8	🗏 Right	🖋 Scale
2	X2	Numeric	8	0	lokasi	{1, sangat t	None	8	≣ Right	🖋 Scale
0										

2. Mengisi Data

Setelah nama variabel didefinisikan, langkah selanjutnya adalah mengisi 10 data konsumen dan lokasi. Untuk itu, lembalikan tampilan pada **DataView.** Isikan data sehingga akan tampak di layar sebagai berikut:

✓ X1	🧳 X2
puas	puas
puas	puas
sangat puas	puas
puas	puas
puas	puas
puas	puas
sangat puas	sangat puas
sangat puas	sangat puas
tidak puas	tidak puas
tidak puas	tidak puas

3. Menyimpan Data

Dari data di atas dapat disimpan, dengan prosedur sebagai berikut:

- Dari menu utama SPSS, pilih menu File-Save As
- Berikan nama file untuk keseragaman berikan nama **korelasi kendall** dan tempatkan file pada directory yang dikehendaki.

4. Mengolah Data

- Klik Analyze-correlate- Bivariate
- Pada kotak Row(s), masukkan variable pengalaman
- Masukkan kepuasan konsumen, lokasi pada kotak variable,

Beri tanda $\sqrt{}$ pada kendall's tau-b Beri tanda $\sqrt{}$ pada two tailed Beri tanda $\sqrt{}$ pada flag significant correlations sehingga akan tampak di layar sebagai berikut:

Bivariate Correlations		×			
	Variables:	Options Style Bootstrap			
Correlation Coefficients –	au-b 🔲 Spearman				
 Test of Significance <u> <u>■</u> <u>T</u>wo-tailed [©] One-tailed </u> 					
Flag significant correlations OK Paste Reset Cancel Help					

klik **Ok**

5. Menyimpan hasil Output

6. Output SPSS dan Analisisnya

	с	orrelations		
			kepuasan konsumen	lokasi
Kendall's tau_b	kepuasan konsumen	Correlation Coefficient	1.000	.882**
		Sig. (2-tailed)		.004
		Ν	10	10
	lokasi	Correlation Coefficient	.882**	1.000
		Sig. (2-tailed)	.004	
		Ν	10	10
**. Correlation	is significant at the 0.01 I	level (2-tailed).		

Perumusan Masalah

Apakah terdapat hubungan antara kepuasan konsumen dan lokasi?

Hipotesis (dugaan)

Ho: tidak terdapat hubungan antara kepuasan konsumen dan lokasi

Ha : terdapat hubungan antara kepuasan konsumen dan lokasi

Keputusan

Jika Sig > 0,05 maka Ho diterima

Jika Sig < 0,05 maka Ho ditolak

Pengambilan keputusan

Untuk menjawab perumusan masalah diatas, maka :

Nilai sig (0,004) < 0,05 maka Ho ditolak artinya terdapat hubungan antara kepuasan konsumen dan lokasi.

C. Uji Korelasi Pearson (data rasio)

Uji korelasi pearson bertujuan untuk menguji hubungan antara dua variable yang berdata rasio ataupun data kuantitatif yaitu data yang berisi angka sesungguhnya (saat mengambil data langsung dalam bentuk angka misal data penjualan). Untuk mengetahui terdapat hubungan atau tidak dapat dilihat dari signifikan dan seberapa besar hubungannya dapat dilihat dengan nilai r.

Contoh Soal

Ingin diketahui apakah ada korelasi diantara variable-variabel pelanggaran lalulintas (tilang), jumlah kendaraan roda empat (mobil)

Berikut datanya :

Tilang X1	Mobil X2
20	258
24	265
25	249
18	125
15	200
16	124
12	251
10	211
12	124
17	159

Penyelesaian

Langkah-langkahnya:

- 1. Pemasukan Data Ke SPSS
 - Buka lembar kerja baru klik File-New-Data
 - Menampilakan Variabel View untuk mempersiapkan pemasukkan nama dan properti variabel.
 - Variabel pertama : tilang X1 Maka isikan: Name : ketik X1 Type : pilih Numeric Width : pilih 8 Decimal : pilih 0 Label : ketik tilang Value : none Missing : pilih None Columns : pilih 8 Align : pilih Right Measure : pilih Scale
 - <u>Variabel kedua : mobil X2</u> Maka isikan:

Name : ketik X2 Type : pilih Numeric Width :ketik 8 Decimal : pilih 0 Label : ketik mobil Value : none Missing: pilih None Columns: pilih 8 Align: pilih Right Measure : pilih Scale

Sehingga akan tampak di layar sebagai berikut:

I	Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure
ľ	X1	Numeric	8	0	tilang	None	None	8	≣ Right	🖋 Scale
	X2	Numeric	8	0	mobil	None	None	8	≣ Right	🖋 Scale

2. Mengisi Data

Setelah nama variabel didefinisikan, langkah selanjutnya adalah mengisi 10 data jumlah tilang,mobil. Untuk itu, lembalikan tampilan pada **DataView.** Isikan data sehingga akan tampak di layar sebagai berikut:

	🛷 X1	🛷 X2	
Τ	20	258	
	24	265	
	25	249	
	18	125	
	15	200	
	16	124	
	12	251	
	10	211	
	12	124	
	17	159	

3. Menyimpan Data

Dari data di atas dapat disimpan, dengan prosedur sebagai berikut:

- Dari menu utama SPSS, pilih menu File-Save As
- Berikan nama file untuk keseragaman berikan nama **korelasi pearson** dan tempatkan file pada directory yang dikehendaki.

4. Mengolah Data

- Klik Analyze-correlate- Bivariate
- Masukkan tilang, mobil pada kotak variable, Beri tanda √ pada pearson Beri tanda √ pada two tailed

Beri tanda $\sqrt{}$ pada flag significant correlations sehingga akan tampak di layar sebagai berikut:

Bivariate Correlations	×				
	Variables: ✓ tilang [X1] ✓ mobil [X2] ✓ Style Bootstrap				
Correlation Coefficients	u-b 🗖 Spearman				
Test of Significance					
✓ Elag significant correlations OK Paste Reset Cancel Help					

klik **Ok**

- 5. Menyimpan hasil Output
- 6. Output SPSS dan Analisisnya

Correlations				
		tilang	mobil	
tilang	Pearson Correlation	1	.399	
	Sig. (2-tailed)		.253	
	Ν	10	10	
mobil	Pearson Correlation	.399	1	
	Sig. (2-tailed)	.253		
	Ν	10	10	

Perumusan Masalah

Apakah terdapat hubungan antara tilang dan mobil?

Hipotesis (dugaan)

Ho: tidak terdapat hubungan antara tilang dan mobil

Ha : terdapat hubungan antara tilang dan mobil

Keputusan

Jika Sig > 0,05 maka Ho diterima

Jika Sig < 0,05 maka Ho ditolak

Pengambilan keputusan

Untuk menjawab perumusan masalah diatas, maka :

Nilai sig (0,253) > 0,05 maka Ho diterima artinya tidak terdapat hubungan antara tilang dan mobil. Maka koefisien korelasi tilang dengan mobil sebesarr 0,399 berarti lemah.

Analisis Validitas Dan Realibilitas Suatu Kuisioner

Uji validitas dan reliabilitas digunakan untuk menguji data yang menggunakan daftar pertanyaan atau kuisioner untuk melihat pertanyaan dalam kuisioner yang diisi oleh responden tersebut layak atau belum pertanyaan-pertanyaan yang digunakan untuk mengambil data.

A. Validitas

Uji validitas digunakan untuk mengetahui kelayakan butir-butir dalam suatu daftar pertanyaan dalam mendefinisikan suatu variabel. Daftar pertanyaan ini pada umumnya mendukung suatu kelompok variable tertentu.

Uji validitas sebaiknya dilakukan pada setiap butir pertanyaan diuji validitasnya. Hasil r hitung dibandingkan dengan r table dimana df=n-2 dengan sig 5%. Jika r table < r hitung maka valid

B. Reliabilitas

Reliabilitas (keandalan) merupakan ukuran suatu kestabilan dan konsistensi responden dalam menjawab hal yang berkaitan dengan kontruk-kontruk pertanyaan yang merupakan dimensi suatu variable dan disusun dalam suatu bentuk kuisioner.

Uji reliabilitas dapat dilakukan secara bersama-sama terhadap seluruh butir pertanyaan. Jika nilai alpha > 0,60 maka reliabel.

Contoh soal

Pelayanan merupakan satu hal yang sangat penting diperhatikan oleh hotel, jika konsumen merasa puas terhadap pelayanan yang diberikan oleh hotel maka itulah tujuan utama pelayanan. Ujilah validitas dan reliabilitas dari jawaban responden atas pertanyaan yang diajukan sebagai berikut :

Butir	Pertanyaan		Ska	ıla	
		STS	TS	S	SS
1	Apakah karyawan dihotel kami ramah				
2	Apakah karyawan dihotel kami ramah cepat tanggap dengan				
	apa yang diinginkan konsumen				
3	Apakah karyawan dihotel kami ramah telah memberikan				
	pelayanan sesuai dengan keinginan konsumen				
4	Apakah karyawan dihotel kami dapat selalu memberikan				
	keterangan dengan jelas setiap pertanyaan konsumen yang				
	sehubungan dengan hotel				
5	Apakah anda sebagai tamu mendapat pelayanan yang baik				
	dihotel kami.				

Keterangan :

STS = sangat tidak setuju (nilainya 1)

TS = Tidak setuju (nilainya 2)

S =setuju (nilainya 3)

SS =sangat setuju (nilainya 4)

Maka jawaban dari responden sebagai berikut :

Jawaban responden atas pertanyaan pelayanan				
p1	p2	р3	p4	p5
4	4	1	4	4
1	1	2	4	4
1	1	2	4	4
2	2	3	4	2
4	1	2	1	2
3	3	2	2	2
4	4	4	4	4
3	2	2	3	2
2	2	3	2	2
2	1	3	4	3
1	1	1	3	2
1	1	1	2	2
1	1	1	2	2
3	1	2	2	2
2	2	2	1	2
3	2	2	4	3
3	3	2	3	3
1	1	2	3	2
2	2	2	2	2
3	2	2	2	3
1	1	1	1	1
2	2	3	3	3
1	1	1	1	2
4	4	3	4	4
1	1	1	1	1
1	1	2	2	1
3	3	3	3	3
3	2	2	3	3
3	1	3	3	2
1	1	1	1	1

Penyelesaian :

Langkah-langkahnya

- 7. Pemasukan data ke SPSS
 - Buka lembar kerja baru klik File-new-data
 - Menampilkan Variabel view untuk mempersiapkan pemasukan nama dan property variabel.

Variable pertama : pertanyaan 1 Maka isikan : Nama : ketik p1 Type : pilihlah numeric Width : ketik 8 **Decimal** : ketik 0 Label : ketikpertanyaan 1 Value : none Missing : none **Columns** : ketik 8 Align : pilih right Measure : pilih scale Variable kedua :pertanyaan 2 Maka isikan : Nama : ketik p2 Type : pilihlah numeric Width : ketik 8 **Decimal** : ketik 0 Label : ketikpertanyaan 2 Value : none Missing : none **Columns** : ketik 8 Align : pilih right Measure : pilih scale Variable ketiga :pertanyaan 3 Maka isikan : Nama : ketik p3

Type : pilihlah numeric Width : ketik 8 **Decimal** : ketik 0 Label : ketikpertanyaan 3 Value : none Missing : none Columns : ketik 8 Align : pilih right Measure : pilih scale Variable keempat :pertanyaan 4 Maka isikan : Nama : ketik p4 Type : pilihlah numeric Width : ketik 8 **Decimal** : ketik 0 Label : ketik pertanyaan 4 Value : none Missing : none Columns : ketik 8 Align : pilih right Measure : pilih scale Variable kelima :pertanyaan 5 Maka isikan : Nama : ketik p5 **Type** : pilihlah numeric Width : ketik 8 **Decimal** : ketik 0 Label : ketikpertanyaan 5 Value : none Missing : none Columns : ketik 8 Align : pilih right Measure : pilih scale

<u>F</u> ile	<u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>T</u> ransform	<u>A</u> nalyze	<u>G</u> raphs <u>U</u> t	ilities E <u>x</u> tensions	<u>W</u> indow	<u>H</u> elp			
		Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure
	1	p1	Numeric	8	0	pertanyaan 1	None	None	8	≣ Right	🔗 Scale
	2	p2	Numeric	8	0	pertanyaan 2	None	None	8	≣ Right	🔗 Scale
	3	p3	Numeric	8	0	pertanyaan 3	None	None	8	≣ Right	🔗 Scale
	4	p4	Numeric	8	0	pertanyaan 4	None	None	8	≣ Right	🔗 Scale
	5	р5	Numeric	8	0	pertanyaan 5	None	None	8	🗃 Right	🖋 Scale

Sehingga akan tampak dilayar sebagai berikut :

8. Mengisi data

Setelah nama variable didefinisikan, langkah selanjutnya adalah mengisi 30 data pertanyaan 1 sampai 5. Untuk itu, kembalikan tampilan pada data view. Isikan data sehingga akan tampak dilayar sebagai berikut :

<u>F</u> ile <u>E</u> dit	⊻iew <u>D</u> ata	Transform	Analyze G	raphs <u>U</u> tiliti	es E <u>x</u> tensions
	🥔 p1	🤣 p2	🛷 рЗ	🧼 p4	🧼 p5
1	4	4	1	4	4
2	1	1	2	4	4
3	1	1	2	4	4
4	2	2	3	4	2
5	4	1	2	1	2
6	3	3	2	2	2
7	4	4	4	4	4
8	3	2	2	3	2
9	2	2	3	2	2
10	2	1	3	4	3
11	1	1	1	3	2
12	1	1	1	2	2
13	1	1	1	2	2
14	3	1	2	2	2
15	2	2	2	1	2
16	3	2	2	4	3
1/	3	3	2	3	3
18	1	1	2	3	2
19	2	2	2	2	2
20	3	2	2	2	3
21	1	1	1	1	1
22	Z	2	3	3	3
23	1	1	1	1	2
24	4	4	3	4	4
25	1	1	1	1	1
Data View	Variable View				

9. Menyimpan data

Data diatas dapat disimpan, dengan prosedur sebagai berikut :

- Dari menu utama SPSS, pilih menu File-save as
- berikan nama file untuk keseragaman berikan nama **Valid dan Reliabel** dan tempatkan file pada directory yang dikehendaki.

10. Mengolah data

Untuk mencari nilai mean, median, modus, quartile, varian, standar deviasi. Langkah-langkah :

- Pilih analyze-Scale-ReliabilityAnalysis
- Lalupindahkan**p1, p2, p3, p4, p5** kekotak **items** seperti tampak dilayar sebagai berikut :

Model: Alpha Concel Help	Reliability Ar	Alpha *	Paste	Items: Pertanyaan 1 [p1] Pertanyaan 2 [p2] Pertanyaan 3 [p3] Pertanyaan 4 [p4] Pertanyaan 5 [p5] Reset Cancel Help	Statistics
---------------------------	----------------	---------	-------	--	------------

• Klik statistic

Beri tanda $\sqrt{}$ pada scale if item deleted

Reliability Analysis: Statistics	×				
Descriptives for	Inter-Item				
🔲 Item	Correlations				
Scale	Covarianc <u>e</u> s				
Scale if item deleted					
r Summaries					
Means	None				
<u>Variances</u>	© <u>F</u> test				
Covariances	© Friedman chi-sguare				
Correlations	Coc <u>h</u> ran chi-square				
Hotelling's T-square	Tukey's test of additivity				
Intraclass correlation coefficient					
Mo <u>d</u> el: Two-Way Mixed 🔻	Type: Consistency 🔻				
Confidence interval: 95 %	Test val <u>u</u> e: 0				
Canc	Help				

Klik continue

Klik Ok

- 11. Menyimpan Output
- 12. Output SPSS dan analisisnya

Reliability

Case Processing Summary				
		N	%	
Cases	Valid	30	100.0	
	Excluded ^a	0	.0	
	Total	30	100.0	
Reliability Statistics				
Cronbach's Alpha N of Items				
.841 5				

Item-Total Statistics					
	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Cronbach's Alpha if Item Deleted	
pertanyaan 1	8.87	9.637	.627	.816	
pertanyaan 2	9.27	9.789	.692	.796	
pertanyaan 3	9.03	11.275	.584	.827	
pertanyaan 4	8.47	9.637	.621	.818	
pertanyaan 5	8.63	9.895	.736	.786	

Hasil uji validitas

Dengan menggunakan jumlah responden sebanyak 30 maka r table dapat diperoleh melalui table r product moment pearson dengan df (degree of freedom) = n-2, jadi df = 30-2 = 28, maka r table = 0,312. Butir pertanyaan dikatakan valid jika nilai r hitung > r tabel. Dapat dilihat dari Corrected Item Total Correlation. Analisis output bisa dilihat dibawah ini:

Variabel	r hitung	r tabel	keterangan
Pertanyaan 1	0,627	0,312	valid
Pertanyaan 2	0,692	0,312	valid
Pertanyaan 3	0,584	0,312	valid
Pertanyaan 4	0,621	0,312	valid
Pertanyaan 5	0,736	0,312	valid

Hasil uji reliabilitas

uji reliabilitas alpha, jika nilai alpa > 0,60 maka kontruk pertanyaan yang merupakan dimensi variable adalah reliabel. Nilai cronbach's alpha adalah 0,841 jadi diatas 0,60 maka reliabel.

Uji Normalitas Untuk Regresi linier

Apabila peneliti menggunakan uji hipotesis regresi linier, data harus memenuhi uji normalitas residual variabel yang akan diregresikan, bukan normalitas per variabel.

Contoh Soal

Kecerdasan (X1)	Jam belajar perhari dalam menit (X2)	Prestasi belajar (Y)
38	60	58
32	50	52
21	43	48
25	45	49
28	49	52
32	59	57
32	50	55
28	45	50
27	46	51
38	69	62
29	49	52
36	59	57
32	50	55
28	45	50
24	46	51
38	69	62
32	49	52
35	59	57
32	50	55

Data diatas akan dilakukan uji normalitas residual

A. MENGOLAH DATA

• Klik Analyze – Regression – Linier.

Masukkan **prestasi belajar** ke kotak **Dependent** sedangkan **kecerdasan** dan **jam belajar** pada kota **Independent(s).** sehingga tampa pada layar sebagai berikut:

Linear Regression		×
kecerdasan [X1]	Dependent: Prestasi belajar [Y] Block 1 of 1 Previous Next Independent(s): kecerdas an [X1] jam belajar [X2] Method: Enter	Statistics Plots Save Options Style Bootstrap
ОК	Selection Variable: Case Labels: WLS Weight: Paste Reset Cancel Help	

• Klik tombol Save

Beri tanda $\sqrt{pada residual - unstandardized}$

Sehingga tampak sebagai berikut :

Linear Regression: Save					
Predicted Values	- Residuals				
Unstandardized	Unstandardized				
Standardized	Standardized				
Adjusted	Studentized				
S E of mean predictions					
E	Studentized deleted				
- Distances					
Mahalanahia	DfRata(a)				
	Etenderdized DfBete(e)				
	Standardized DfEit				
Prediction Intervals	Prediction Intervals				
Mean Individual					
Confidence Interval: 95 %					
Coefficient statistics					
Create coefficient statistics					
Create a new dataset					
Dataset name:					
Write a new data file					
File					
c Export model information to XML file					
	Browse				
✓ Include the covariance matrix					
Cancel Help					

- Klik Continue
- Klik **OK**

Lihatlah hasil nilali residual pada **data view** sebagai berikut :

🫷 Y	🛷 X1	🛷 X2	STRES 1
58	38.00	60.00	49606
52	32.00	50.00	-1.36680
48	21.00	43.00	22908
49	25.00	45.00	89203
52	28.00	49.00	08026
57	32.00	59.00	.24555
55	32.00	50.00	1.63320
50	28.00	45.00	57464
51	27.00	46.00	.27649
62	38.00	69.00	.11629
52	29.00	49.00	30779
57	36.00	59.00	66459
55	32.00	50.00	1.63320
50	28.00	45.00	57464
51	24.00	46.00	.95910
62	38.00	69.00	.11629
52	32.00	49.00	99040
57	35.00	59.00	43705
55	32.00	50.00	1.63320

Kemudian nilai res_1 ini baru diuji normalitas dengan Kolmogorov Smirnov

- Klik Analyze Non Parametrik Test Legacy Legacy Dialogs-1- Sample K-S
- Masukkan **unstandardized residual** pada kotak **Test Variable List:** sehingga tampak di layar sebagai berikut

One-Sample Kolmogorov-	-Smirnov Test	×
 prestasi belajar [Y] kecerdasan [X1] jam belajar [X2] 	Test Variable List:	Exact Options
Test Distribution	al aste <u>R</u> eset Cancel Help	

Test Distribution : pilih **Normal** Klik **Ok B. MENYIMPAN HASIL OUTPUT**

C. HASIL OUTPUT

One-Sample Koln	nogorov-Smiri	Nov Test Unstandardiz ed Residual		
И		19		
Normal Parameters ^{a,b}	Mean	.0000000		
	Std. Deviation	.89514936		
Most Extreme Differences	Absolute	.168		
	Positive	.168		
	Negative	124		
Test Statistic		.168		
Asymp. Sig. (2-tailed) .163°				
a. Test distribution is Normal.				
b. Calculated from data.				

Pengambilan Keputusan

Jika Sig > 0,05 maka data berdistribusi normal Jika Sig < 0,05 maka data tidak berdistribusi normal Sig data adalah 0,307 maka lebih besar dari 0,05 sehingga data berdistribusi normal

Mengatasi Data Yang Tidak Normal Untuk Regresi linier

Regresi linier membutuhkan nilai residual untuk semua variabel berdistribusi normal. Apabila tidak berdistribusi normal, maka langkah yang harus diambil adlah seperti contoh soal berikut ini:

A. MENGATASI DATA TIDAK NORMAL UNTUK REGRESI DENGAN TRANSFORMASI DATA CONTOH SOAL

Terdapat data sebagai berikut:

	-			
🛷 X1	🧳 X2	🧳 ХЗ	🤣 Y	
5.31	9.21	10.49	3.20	
4.60	9.21	10.47	2.75	
5.09	9.21	9.16	3.19	
7.28	9.21	8.99	3.65	
8.75	6.63	9.05	3.00	
6.91	7.10	27.99	5.56	
6.17	5.78	26.46	6.70	
7.74	7.80	20.25	11.12	
14.18	.72	20.07	6.34	
7.45	1.97	19.26	5.48	

Kemudian nilai residualnya diuji apakah berdistribuisi normal atau tidak

1. MENGOLAH DATA

• Klik Analyze – Regression – Linier..

Masukkan Y ke kotak **Dependent** sedangakn X1, X2, dan X3 pada kotak **Indepentent(s)**. Sehingga tampak di layar sebagai berikut:

Linear Regression
DER [X1] DER [X1] DER [X2] DPR [X3] DPR [X3] DPR [X3] DPR [X3] DPR [X3] DPR [X3] DPR [X3] Method: Enter Selection Variable: Case Labels: OK Paste Reset Cancel Help

• Klik tombol Save

Beri tanda $\sqrt{}$ pada rresidual – **Unstandardized** sehingga tampak di layar sebagai barikut:

Linear Regression: Save	×			
	Residuals Unstandardized Standardized Studentized Deleted Studentized deleted Influence Statistics DfBeta(s)			
Coo <u>k</u> 's	Standardized DfBeta(s)			
Leverage values	DfFit			
Prediction Intervals	Standardized DfFit			
🔲 Mean 🕅 Individual	Covariance ratio			
Confidence Interval: 95 %				
Coefficient statistics				
Create coefficient statistics				
Create a new dataset Dataset name:				
File				
Export model information to XML file				
	Bro <u>w</u> se			
✓ Include the covariance matrix				
Continue Cancel Help				

- Klik Continue
- Klik Ok

Lihatlah hasil nilai residual pada **data view** sebagai berkut:

🛷 X1	🛷 X2	🛷 ХЗ	🧳 Y	RES_1
5.31	9.21	10.49	3.20	39383
4.60	9.21	10.47	2.75	55114
5.09	9.21	9.16	3.19	.02667
7.28	9.21	8.99	3.65	35665
8.75	6.63	9.05	3.00	80972
6.91	7.10	27.99	5.56	-2.51331
6.17	5.78	26.46	6.70	26763
7.74	7.80	20.25	11.12	4.47816
14.18	.72	20.07	6.34	64740
7.45	1.97	19.26	5.48	1.03486

Kemudian dilakukan uji normalitas nilai res_1 dengan Kolmogorov Smirnov

- Klik Analyze Non Parametrik Test Legacy Dialogs-1-Sample K-S
- Masukkan **Unstandardized Residual** pada kotak **Test Variable List**, sehingga tampak di layar sebagai berikut

One-Sample Kolmogorov-	Smirnov Te	st	×
DER [X1] LINST [X2] DPR [X3] PBV [Y]	•	est Variable List Vinstandardized Re	Exact Options
Test Distribution	al Iste <u>R</u> e	eset Cancel Helf	2

Test Distribution : pilih **Normal** Klik **OK**

2. HASIL OUTPUT

		Unstandardiz ed Residual	
N		10	
Normal Parameters ^{a,b}	Mean	.0000000	
	Std. Deviation	1.80045465	
Most Extreme Differences	Absolute	.294	
	Positive	.294	
	Negative	226	
Test Statistic		.294	
Asymp. Sig. (2-tailed) .014			
a. Test distribution is No	rmal.		
b. Calculated from data.			
c Tilliefors Significance	Correction.		

3. PENGAMBILAN KEPUTUSAN

Jika Sig > 0,05 maka data berdistribusi normal

Jika Sig < 0,05 maka data tidak berdistribusi normal

Sig data adalah 0,014 yang artinya lebih kecil dari 0,05 sehingga data tidak berdistribusi normal

Data tidak berdistribusi normal, langkah menormalkan data dengan mentransformasikan data adalah sebagai berikut :

• Menu Transform pilih Compute variable sebagai berikut:

Target Variable: SORT_X1 Ype & Label ✓ DER [X1] ✓ DPR [X3] ✓ PBV [M] ✓ SORT_X1	Numeric Expression: = SQRT(X1) + > + > - > - > 4 5 - > 4 5 - = 1 2 / 8 0 . * () Delete *	Function group: All Arithmetic CDF & Noncentral CDF Conversion Current Date/Time Date Arithmetic Date Creation
	OK Paste Reset Cancel Help	

Klik **OK**

Lihat pada data view

🖋 X1	🗳 X2	🗳 ХЗ	🛷 Y	🖋 RES_1	SQRT_X1
5.31	9.21	10.49	3.20	39383	2.30
4.60	9.21	10.47	2.75	55114	2.14
5.09	9.21	9.16	3.19	.02667	2.26
7.28	9.21	8.99	3.65	35665	2.70
8.75	6.63	9.05	3.00	80972	2.96
6.91	7.10	27.99	5.56	-2.51331	2.63
6.17	5.78	26.46	6.70	26763	2.48
7.74	7.80	20.25	11.12	4.47816	2.78
14.18	.72	20.07	6.34	64740	3.77
7.45	1.97	19.26	5.48	1.03486	2.73

• Menu Transform pilih Compute variable sebagai berikut:

Klik **OK**

Lihat pada data view

🛷 X1	🛷 X2	🛷 X3	🔗 Y	RES_1	SQRT_X1	SQRT_X2
5.31	9.21	10.49	3.20	39383	2.30	3.03
4.60	9.21	10.47	2.75	55114	2.14	3.03
5.09	9.21	9.16	3.19	.02667	2.26	3.03
7.28	9.21	8.99	3.65	35665	2.70	3.03
8.75	6.63	9.05	3.00	80972	2.96	2.57
6.91	7.10	27.99	5.56	-2.51331	2.63	2.66
6.17	5.78	26.46	6.70	26763	2.48	2.40
7.74	7.80	20.25	11.12	4.47816	2.78	2.79
14.18	.72	20.07	6.34	64740	3.77	.85
7.45	1.97	19.26	5.48	1.03486	2.73	1.40

• Menu Transform pilih Compute variable sebagai berikut:

Klik **OK** Lihat pada **data view**

🔗 X1	🔗 X2	🖋 ХЗ	🔗 Y	🖋 RES_1	🖉 SQRT_X1	🖉 SQRT_X2	🖋 SQRT_X3
5.31	9.21	10.49	3.20	39383	2.30	3.03	3.24
4.60	9.21	10.47	2.75	55114	2.14	3.03	3.24
5.09	9.21	9.16	3.19	.02667	2.26	3.03	3.03
7.28	9.21	8.99	3.65	35665	2.70	3.03	3.00
8.75	6.63	9.05	3.00	80972	2.96	2.57	3.01
6.91	7.10	27.99	5.56	-2.51331	2.63	2.66	5.29
6.17	5.78	26.46	6.70	26763	2.48	2.40	5.14
7.74	7.80	20.25	11.12	4.47816	2.78	2.79	4.50
14.18	.72	20.07	6.34	64740	3.77	.85	4.48
7.45	1.97	19.26	5.48	1.03486	2.73	1.40	4.39

• Menu Transform pilih Compute variable sebagai berikut:

Compute Variable Iarget Variable: SORT_Y Type & Label Ø DER [X1]	= Numgric Expression: = SQRT(/)	
 INST [/2] DPR [X3] PBV M Unstandardized Re SORT_X1 SORT_X2 SORT_X3 	+ < > 7 8 9 - <= >= 4 5 6 * = ~= 1 2 3 / & 1 0 . * ~ () Delete	Function group: All Arithmetic CDF & Noncentral CDF Conversion Current Date/Time Date Arithmetic Date Creation
(optional case selecti	OK Paste Reset Cancel Help	

Klik **OK** Lihat pada **data view**

🖋 X1	🖋 X2	🖋 ХЗ	🔗 Y	RES_1	SQRT_X1	SQRT_X2	SQRT_X3	🖋 SQRT_Y	
5.31	9.21	10.49	3.20	39383	2.30	3.03	3.24	1.79	
4.60	9.21	10.47	2.75	55114	2.14	3.03	3.24	1.66	
5.09	9.21	9.16	3.19	.02667	2.26	3.03	3.03	1.79	
7.28	9.21	8.99	3.65	35665	2.70	3.03	3.00	1.91	
8.75	6.63	9.05	3.00	80972	2.96	2.57	3.01	1.73	
6.91	7.10	27.99	5.56	-2.51331	2.63	2.66	5.29	2.36	
6.17	5.78	26.46	6.70	26763	2.48	2.40	5.14	2.59	
7.74	7.80	20.25	11.12	4.47816	2.78	2.79	4.50	3.33	
14.18	.72	20.07	6.34	64740	3.77	.85	4.48	2.52	
7.45	1.97	19.26	5.48	1.03486	2.73	1.40	4.39	2.34	

• Klik Analyze – Regression – Linier..

masukkan **SQTT_Y** ke kotak **Dependent** dan **SQRT_X1,SQRT_X2** dan **SQRT_X3** pada kotak **Independent(s).** Sehingga tampak pada layar sebagai berikut:

ta Linear Regression	1.00 1.00 1.00	×
 DER [X1] INST [X2] DPR [X3] PBV [Y] Unstandardized Re SQRT_X1 SQRT_X2 SQRT_X3 	Dependent: SQRT_Y Block 1 of 1 Previous Independent(s): SQRT_X1 SQRT_X2 SQRT_X2 SQRT_X3 Method: Enter	Statistics Plots Save Options Style Bootstrap
ОК	Case Labels: WLS Weight: Paste Reset Cancel Help	

• Klik tombol Save

Beri tanda \sqrt{p} ada residual – **Unstandardized** sehingga tampak di layar sebagai berikut

Linear Regression: Save	
Predicted Values	Residuals
Unstandardized	Unstandardized
Standa <u>r</u> dized	Standardized
Adjusted	Studentized
S.E. of mean predictions	Deleted
	Studentized deleted
Distances	Influence Statistics
Ma <u>h</u> alanobis	Df <u>B</u> eta(s)
Coo <u>k</u> 's	Standardized DfBeta(s)
Leverage values	DfFit
Prediction Intervals	Standardized DfFit
🔲 Mean 📰 Individual	Covariance ratio
Confidence Interval: 95 %	
Coefficient statistics	
Create coefficient statistics	
Oreate a new dataset	
Dataset name:	
Write a new data file File	
Export model information to XML file	
	Bro <u>w</u> se
Include the covariance matrix	
Canc	el Help

- Klik Continue
- Klik **OK**

Lihatlah hasil nilai residual data view sebagai berikut

🔗 X1	🔗 X2	🔗 ХЗ	🔗 Y	RES_1	SQRT_X1	SQRT_X2	SQRT_X3	🖋 SQRT_Y	RES_2
5.31	9.21	10.49	3.20	39383	2.30	3.03	3.24	1.79	04560
4.60	9.21	10.47	2.75	55114	2.14	3.03	3.24	1.66	08900
5.09	9.21	9.16	3.19	.02667	2.26	3.03	3.03	1.79	.07450
7.28	9.21	8.99	3.65	35665	2.70	3.03	3.00	1.91	02562
8.75	6.63	9.05	3.00	80972	2.96	2.57	3.01	1.73	22467
6.91	7.10	27.99	5.56	-2.51331	2.63	2.66	5.29	2.36	48859
6.17	5.78	26.46	6.70	26763	2.48	2.40	5.14	2.59	04342
7.74	7.80	20.25	11.12	4.47816	2.78	2.79	4.50	3.33	.73242
14.18	.72	20.07	6.34	64740	3.77	.85	4.48	2.52	08111
7.45	1.97	19.26	5.48	1.03486	2.73	1.40	4.39	2.34	.19109

Kemudian nilai res_2 ini baru diuji normalitas denagan Kolmogorov Smirnov

Klik Analyze – Non Parametrik Test – Legacy Dialogs -1- Sample K-S

• Masukkan Unstandardized Residual pada kotak Test Variable List, sehingga tampak pada layar sebagi berikut

Cne-Sample Kolmogorov-Smirnov Test	×
INST [X2] INST [X2] INST [X2] INST [X2] INST [X2] INST [X2] INST [X3] INST [X3] INST [X2] INST [X2]	Exact Options
Test Distribution Image: Distribution	

Test Distribution: pilih Normal

Klik OK

4. HASIL OUTPUT

One-Sample Kolmogorov-Smirnov Test					
		Unstandardiz ed Residual			
Ν		10			
Normal Parameters ^{a,b}	Mean	.0000000			
	Std. Deviation	.31390462			
Most Extreme Differences	Absolute	.233			
	Positive	.233			
	Negative	188			
Test Statistic		.233			
Asymp. Sig. (2-tailed)		.134°			
a. Test distribution is No	irmal.				
b. Calculated from data.					
c. Lilliefors Significance	Correction.				

5. PENGAMBILAN KEPUTUSAN

Jika Sig>0,05 maka data berdistribusi normal

Jika Sig < 0,05 maka data tidak berdistribusi normal

Sig data adalah 0,134 yang artinya lebih besar dari 0,05 sehingga data berdistribusi normal

B. MENGATASI DATA TIDAK NORMAL UNTUK REGRESI DENGAN MENGELUARKAN OUTLIER (DATA YANG TIDAK NORMAL)

Apabila data tidak normal, maka peneliti perlu mencari data yang tidak normal tersebut (*outliner*) dan data tersebut tidak dimasukkan dalam data penelitian. Berikut contohnya:
CONTOH SOAL

NO	Ukuran perusahaan (Y)	Pofitabilitas (X1)	Likuiditas (X2)
1	80	3.00	2.00
2	86	3.10	2.00
3	87	3.14	2.00
4	90	3.30	1.00
5	78	2.60	1.00
6	70	2.50	3.00
7	65	2.51	6.00
8	60	1.80	6.00
9	62	1.90	7.00
10	87	3.14	2.00
11	90	3.30	1.00
12	78	2.60	1.00
13	970	.50	12.00
14	565	9.51	6.00
15	970	.50	12.00
16	565	9.51	6.00
17	970	1.50	12.00
18	8965	9.51	6.00

🛷 X1	🛷 X2	🛷 Y	PES_1	
3.00	2.00	80	-18.35331	
3.10	2.00	86	-52.30873	
3.14	2.00	87	-67.29090	
3.30	1.00	90	29.55085	
2.60	1.00	78	297.23881	
2.50	3.00	70	13.65337	
2.51	6.00	65	-468.65347	
1.80	6.00	60	-189.96998	
1.90	7.00	62	-385.69583	
3.14	2.00	87	-67.29090	
3.30	1.00	90	29.55085	
2.60	1.00	78	297.23881	
.50	12.00	970	292.82791	
9.51	6.00	565	-2765.53302	
.50	12.00	970	292.82791	
9.51	6.00	565	-2765.53302	
1.50	12.00	970	-106.72631	
9.51	6.00	8965	5634.46698	

Cone-Sample Kolmogorov-	Smirnov Test	X
profittabilitas [X1] kikuiditas [X2] kikuiditas [X2] kikuiditas [X2] kikuiditas [X2] kikuiditas [X2] kikuiditas [X1] kikuiditas [X2] kikuiditas [X1] kikuiditas [X2] kikuiditas [X2] k	Test Variable List:	Exact Options
Test Distribution ✓ Normal □ Uniform □ Poisson □ Exponenti OK Pa	al aste <u>R</u> eset Cancel Help	

Hasil uji normalitas adalah sebagai berikut

NPar Test

One- S	ample Kolmogor	ov- Smirnov Test
		Unstandardized Residual
N		18
NTab	Mean	,0000000
Normal Parameters	Std. Deviation	1677,212335
	Absolute	,374
Most Extreme Differences	Positive	,374
	Negative	-,279
Kolmogorov- Smirnov Z		1,587
Asymp. Sig. (2 tailed)		,013

a. Test Distribution is Normal

b. Calculated from data

Nilai sig 0,013 < 0,05 sehingga data tidak normal ,perlu dicari data mana yang harus dikeluarkan. Untuk mencari data yang harus dikeluarkan. Caranya sebagai berikut:

Linear Regression		×
profittabilitas [X1] profittabilitas [X2] Unstandardized Re	Dependent: Vukuran perusahaan [Y] Block 1 of 1 Preylous Independent(s): Preylous Method: Enter Sglection Variable: Case Labels: WLS Weight: Paste Reset Cancel Help	Statistics Piots Save Options Style Bootstrap

Pilih Statistics- pilih Casewise diagostics

Linear Regression: Statistic						
Regression Coefficien	Model fit					
Confidence intervals	Descriptives					
Level(%): 95	Part and partial correlations Collinearity diagnostics					
Residuals						
 Durbin-Watson Casewise diagnostics Outliers outside: 	3 standard deviations					
© All cases <u>Continue</u> Cancel Help						

Klik **Continue** Kllik **OK**

Hasil Output data yang harus dikeluarkan

Case Number	Std. Residual	ukuran perusahaan	Predicted Value	Residual
8	3.156	8965	3330.53	5634.467

Data yang harus dkeluarkan adalah data no 18, kemudian dilakukan uji normalitas kembali. Hasil yang di dapat adalah sebagai berikut **NPar Test**

One- Sa	ample Kolmogoro	v- Smirnov Test			
	• •	Unstandardized			
		Residual			
Ν		17			
Name 1 Dama damah	Mean	-331,4392339			
Normal Parameters ^{a,0}	Std. Deviation	942,30432744			
	Absolute	,324			
Most Extreme Differences	Positive	,252			
	Negative	-,324			
Kolmogorov- Smirnov Z		1,338			
Asymp. Sig. (2 tailed)		,056			

a. Test Distribution is Normal

b. Calculated from data

Maka kelompok data sudah normal, kemudian dilakukan uji regresi berganda dengan 17 data, karena 1 data sudahtidak dipakai.

Regresi

Regresi bertujuan untuk menguji pengaruh antara variabel satu dengan variabel lain. Variabel yang dipengaruhi disebut variabel tergantung atau dependen, sedang variabel yang mempengaruhi disebut variabel bebas atau variabel independen. Uji regresi ada 2 yaitu:

- 1. Regresi linier sederhana
- 2. Regresi linier berganda

A. REGRESI LINIER SEDERHANA

Regresi yang memiliki satu variabel dependen dan satu variabel independent. Model persamaan regresi linier sederhana sebagai berikut:

$$\mathbf{Y} = \mathbf{a} + \mathbf{b}\mathbf{X} + \mathbf{e}$$

Contoh Soal

Ingin diketahui apakah ada pengaruh diantara variabel-variabel nilai matematika terhadap nilai fisika. Dengan data sebagai berikut :

Nilai matematika (X)	Nilai fisika (Y)
100	90
90	80
80	80
80	80
70	75
90	85
40	35
45	40
50	45
50	45

Penyelesaian

Langkah – langkahnya

Mengolah Data

- 1. Pemasukkan data ke SPSS
- Buka lembar kerja baru klik File-New-Data
- Menampilakan Variabel View untuk mempersiapkan pemasukkan nama dan properti variabel.

• Variabel pertama : nilai matematika Maka isikan: Name : ketik X Type : pilih Numeric Width : pilih 8 Decimal : pilih 0 Label : ketik nilai matematika Value : pilih None Missing : pilih None Columns : pilih 8 Align : pilih Right Measure : pilih Scale • Variabel kedua : nilai fisika Maka isikan: Name : ketik Y Type : pilih Numeric Width : pilih 8 Decimal : pilih 2 **Label** : ketik nilai fisika Value : pilih none Missing: pilih None Columns: pilih 8 Align: pilih Right Measure : pilih Scale

Sehingga akan tampak di layar sebagai berikut:

I		Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure	Role
ĺ	X		Numeric	8	0	nilai matematika	None	None	8	≣ Right	🖉 Scale	🖌 Input
l	Y		Numeric	8	0	nilai fisika	None	None	8	≣ Right	🖉 Scale	🖌 Input
Ľ	1											

7. Mengisi Data

Setelah nama variabel didefinisikan, langkah selanjutnya adalah mengisi. Untuk itu, kembalikan tampilan pada **DataView.** Isikan data sehingga akan tampak di layar sebagai berikut:

🥔 X	🛷 Y	
100	90	
90	80	
80	80	
80	80	
70	75	
90	85	
40	35	
45	40	
50	45	
50	45	

8. Menyimpan Data

Dari data di atas dapat disimpan, debgan prosedur sebagai berikut:

- Dari menu utama SPSS, pilih menu File-Save As
- Berikan nama file untuk keseragaman berikan nama **regresi_sederhana** dan tempatkan file pada directory yang dikehendaki.

9. Mengolah Data

- Klik Analyze-Regression-Linier
- Masukkanpada kotak **Dependent** dan pada kotak **Independent**(s) sehingga tampak di layar sebagai berikut:

Linear Regression		×
nilai matematika [X]	Dependent: Iliai fisika [Y] Block 1 of 1 Previous Independent(s): Ind	Statistics Plots Save Options Style Bootstrap
ОК	Selection Variable: Case Labels: WLS Weight: Paste Reset Cancel Help	

klik **Ok**

- **10. Menyimpan hasil Output**
- 11. Output SPSS dan Analisisnya

Regression

Variables Entered/Removed ^a								
Model	Variables Entered	s Varis Ren	ables noved	Metho	d			
1	nilai matematika	a ^b		Enter				
a. De	pendent Var	iable: nilai fis	ika					
b. All	requested va	ariables ente	red.					
		Model S	ummary	,				
Model	R	R Square	Adjusted R Std. Error of are Square the Estimate					
1	.977ª	.955		.950	4.809	-		
a. Pre	edictors: (Co	nstant), nilai	matematil	ka		-		
			AN	IOVA ^a				
Model		Sum (Squar	of es	df	Mean Square	F	Sig.	
1	Regression	3937	7.479	1	3937.479	170.250	.000 ^b	
	Residual	185	185.021		23.128			
	Total 4122.500							
a. De	a. Dependent Variable: nilai fisika							
b. Pre	b. Predictors: (Constant), nilai matematika							

Coefficients ^a									
		Unstandardize	d Coefficients	Standardized Coefficients					
Model		В	Std. Error	Beta	t	Sig.			
1	(Constant)	-1.613	5.364		301	.771			
	nilai matematika	.966	.074	.977	13.048	.000			
a. D	a. Dependent Variable: nilai fisika								

Perumusan Masalah

Apakah terdapat pengaruh antara nilai matematika terhadap nilai fisika?

Hipotesis (Dugaan)

Ho : tidak ada pengaruh antara nilai matematika terhadap nilai fisika

Ha : terdapat pengaruh antara nilai matematika terhadap nilai fisika

Pengambilan Keputusan Dimana X = nilai matematika Y = nilai fisika Cara 1 Jika Sig > 0,05 maka Ho diterima

Jika Sig < 0,05 maka Ho ditolak

Cara 2

Jika –t table < t hitung < table maka Ho diterima

Jika t hitung < -t table dan t hitung > t table maka Ho ditolak

Hasilnya

Cara 1 dari penelitian di atas bahwa Sig adalah 0.000 yang berarti < 0,05 maka Ho ditolak

Cara 2 untuk t table kita melihat ditabel t (df=n-1, dua sisi (0,025))=2,262 dan t hitung adalah 13,048

Jadi berada pada daerah Ho ditolak maka ada pengaruh antara nilai matematika dengan nilai fisika. Setelah mengetahui ada pengaruh antara nilai matematika dan fisika, besar pengaruhnya nilai matematika terhadap nilai fisika dapat dilihat dari output B yaitu sebesar 0,966 jadi persamaan regresinya adalah Y = -1,613 + 0,966X + e. jika nilai matematika naik nilai satu satuan maka nilai fisika akan naik sebesar 0,966. Nilai R square adalah 0,955. R square dapat disebut koefisien determinasi yang dalam hal ini berarti 95,5% nilai matematika dipengaruhi nilai fisika.

B. REGRESI LINIER BERGANDA

Regresi yang memiliki satu variabel dependen dan lebih dari satu variabel

Independent. Model persamaan regresi linier sederhana sebagai berikut:

Y = a + b1X1 + b2X2 + + e

Untuk menguji regresi linier bergansa bersamaan dilakukan pengujian asumsi klasik yang akan dibahas setelah bab ini. Kenapa harus dilakukan uji asumsi klasik karena variabel independennya lebih dari satu maka perlu diuji keindependenan hasil uji regresi dari masing-masing variabel independent terhadap variabel dependennya.

Contoh Soal :

Ingin diketahui apakah ada pengaruh antara IQ dan nilai matematika terhadap nilai fisika ada 10 sampel. Datanya sebagai berikut:

Nilai matematika (X2)	Nilai fisika (Y)	IQ (X1)
100	90	150
90	80	140
80	80	140
80	80	140
70	75	130
90	85	150
40	35	140
45	40	140
50	45	140
50	45	135

Penyelesaian

Langkah – langkahnya

Mengolah Data

1. Pemasukkan data ke SPSS

- Buka lembar kerja baru klik File-New-Data
- Menampilakan Variabel View untuk mempersiapkan pemasukkan nama dan properti variabel.
- Variabel pertama : nilai fisika (Y) Maka isikan: Name : ketik Y Type : pilih Numeric Width : pilih 8 Decimal : pilih 0 Label : ketik nilai fisika Value : pilih None Missing : pilih None Columns : pilih 8 Align : pilih Right Measure : pilih Scale • Variabel kedua : IQ (X1) Maka isikan: Name : ketik X2 **Type** : pilih **Numeric** Width : pilih 8 **Decimal** : pilih 0 Label : ketik IQ
 - Value : pilih none
 - Missing: pilih None
 - Columns: pilih 8
 - Align: pilih Right
 - Measure : pilih Scale
- Variabel ketiga: nilai matematika (X2) Maka isikan:

Name : ketik X2 Type : pilih Numeric Width :pilih 8 Decimal : pilih 0 Label : ketik nilai matematika Value : pilih none Missing: pilih None Columns: pilih 8 Align: pilih Right Measure : pilih Scale

Sehingga akan tampak di layar sebagai berikut:

t	<u>V</u> iew <u>D</u> ata	<u>T</u> ransform	<u>A</u> nalyze <u>(</u>	<u>G</u> raphs <u>U</u> t	ilities E <u>x</u> tensions	<u>W</u> indow	<u>H</u> elp				
	Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure	Role
	Y	Numeric	8	0	nilai fisika	None	None	8	疆 Right	🔗 Scale	🔪 Input
	X1	Numeric	8	0	IQ	None	None	8	를 Right	🔗 Scale	🔪 Input
	Х2	Numeric	8	0	nilai matematika	None	None	8	를 Right	🔗 Scale	🔪 Input

2. Mengisi Data

Setelah nama variabel didefinisikan, langkah selanjutnya adalah mengisi. Untuk itu, lembalikan tampilan pada **DataView.** Isikan data sehingga akan tampak di layar sebagai berikut:

🧳 Y	🛷 X1	🛷 X2	
90	150	100	
80	140	90	
80	140	80	
80	140	80	
75	130	70	
85	150	90	
35	140	40	
40	140	45	
45	140	50	
45	135	50	

3. Menyimpan Data

Dari data di atas dapat disimpan, debgan prosedur sebagai berikut:

- Dari menu utama SPSS, pilih menu File-Save As
- Berikan nama file untuk keseragaman berikan nama **regresi_berganda** dan tempatkan file pada directory yang dikehendaki.

4. Mengolah Data

- Klik Analyze-Regression-Linier
- Masukkanpada kotak **Dependent** dan pada kotak **Independent**(*s*) sehingga tampak di layar sebagai berikut:

tinear Regression		×
 IQ [X1] 	Dependent: Independent(s): Independent	Statistics Plots Sgve Options Style Bootstrap
Сок	Case Labels:	

klik **Ok**

- 5. Menyimpan hasil Output
- 6. Output SPSS dan Analisisnya

Regression

		Co	oefficients ^a				
		Unstandardize	d Coefficients	Standardized Coefficients			
Model		В	Std. Error	Beta	t	Sig.	
1	(Constant)	72.536	33.755		2.149	.069	
	IQ	568	.256	159	-2.216	.062	
	nilai matematika	1.047	.071	1.059	14.778	.000	
a. Dependent Variable: nilai fisika							

Perumusan Masalah

- 1. Apakah terdapat pengaruh antara IQ dan nilai matematika terhadap nilai fisika secara simultan?
- 2. Apakah terdapat pengaruh antara IQ dan nilai matematika terhadap nilai fisika secara parsial?

Hipotesis (Dugaan)

Ho1 : tidak terdapat pengaruh antara IQ dan nilai matematika terhadap nilai fisika secara simultan

Ha1: terdapat pengaruh antara IQ dan nilai matematika terhadap nilai fisika secara simultan

Ho2 : tidak terdapat pengaruh antara IQ dan nilai matematika terhadap nilai fisika secara parsial

Ha2 : terdapat pengaruh antara IQ dan nilai matematika terhadap nilai fisika secara parsial

Pengambilan Keputusan

Dimana X1 = IQ

X2 = Nilai matematika

Y = nilai fisika

1. Untuk menjawab pertanyaan pertama

Cara 1

Jika Sig > 0,05 maka Ho diterima

Jika Sig < 0,05 maka Ho ditolak

Cara 2

Jika F hitung < F table maka Ho diterima

Jika F hitung > F table maka Ho ditolak

Hasilnya:

Cara 1 didapatkan sig adlah 0,000 maka < 0,05 sehingga Ho ditolak

Cara 1 dimana F table (V1 = k, V2= n-k-1) jadi (V1=2,V2=7) = 4,737(dapat dilihat di table F). menggunakan uji satu sisi (5%) k adalah jumlah variable independent dimana F adalah 129,172

Maka untuk F hitung > F table maka Ho ditolak jadi secara simultan ada pengaruh antara IQ, nilai matematika terhadap nilai fisika.

2. Untuk menjawab pertanyaan kedua

Cara 1

Jika Sig > 0,05 maka Ho diterima

Jika Sig < 0,05 maka Ho ditolak

Cara 2

Jika –t tabel < t hitung < t table maka Ho diterima

Jika t hitung < -t table dan t hitung > t table maka Ho ditolak

Untuk IQ (X1) dengan nilai fisika (Y)

Cara 1 didapatkan sig adlah 0,009 maka < 0,05 sehingga Ho ditolak

Cara 2 dimana t table (df=n-1; dua sisi (0,025)) = 2,262 t hitung = 3,578 jadi Ho ditolak

sehingga ada pengaruh antara IQ dengan nilai fisika.

Untuk matematika (X2) dengan nilai fisika (Y)

Cara 1 didapatkan sig adlah 0,000 maka < 0,05 sehingga Ho ditolak

Cara 2 dimana t table (df=n-1; dua sisi (0,025)) = 2,262 t hitung = 3,428 jadi Ho ditolak sehingga ada pengaruh antara nilai matematika dengan nilai fisika.

BAB III PENUTUP

Bismillahirrahmanirrohim

SPSS sebagai sebuah program data untuk berbagai keperluan memang sudah tidak diragukan lagi kemampuannya. Ada banyak hal yang bisa dilakukan oleh SPSS sebagai alat untuk mengolah data dalam bidang statistik matematik (*mathematical statistiscs*) dan statistik terapan (applied statistics). Apa yang ingin saya sampaikan dalam bab penutup ini adalah tidak semua pengolahan data menggunakan SPSS dapat saya masukkan sebagai bidang materi dalam buku panduan teknik analisis data ini, hanya berfokus pada pengolahan data pada bidang materi statistik terapan (*applied statistics*) saja yang sesuai silabus perkuliahan mata kuliah statistik pendidikan dan praktikum teknik analisis data terapan di Program Studi Tadris Matematika Fakultas Tarbiyah IAIN Curup.

Demikian yang dapat kami paparkan mengenai materi pengolahan data analisis statistik terapan *(applied statistics)* yang menjadi pokok bahasan dalam buku ini panduan teknik analisis data ini, tentunya masih banyak kekurangan dan kelemahannya, karena terbatasnya pengetahuan dan kurangnya rujukan atau referensi yang ada hubungannya dengan judul buku panduan ini. Menyadari bahwa penulis masih jauh dari kata sempurna, kedepannya penulis akan lebih fokus dan details dalam menjelaskan tentang buku panduan teknik analisis data berbasis teknologi informasi ini dengan sumber-sumber yang lebih banyak yang tentunya dapat dipertanggung jawabkan. Penulis banyak berharap para pembaca yang akan membaca buku panduan teknik analisis data ini dapat memberikan kritik dan saran yang membangun kepada penulis demi kesempurnaan buku panduan ini dan penulisan buku panduan teknik analisis data di kesempatan-kesempatan berikutnya. Semoga buku panduan ini dapat berguna bagi penulis pada khususnya juga para pembaca, serta para pengguna statistik lainnya.

Perlu juga saya sampaikan bahwa semua data yang saya gunakan dalam buku panduan ini hanyalah data fiktif sebaga contoh data kasus penelitian, sekedar untuk menjelaskan, bukanlah hasil penelitian yang sesungguhnya. Demikian yang bisa saya sampaikan sebagai penutup buku panduan ini, Sekian dan terimakasih semoga mahasiswa maupun setiap pengguna statistik khususnya dapat mengambil manfaat dan menambah pengetahuan serta menumbuhkan minat maupun motivasi dalam melakukan pengolahan data statistik yang dianggap sulit, rumit dengan menggunakan *software* statistik terutama *software* SPSS dengan versi terbaru ini. Sekian dan terimakasih. Billahitaufiq walhidaya......

DAFTAR PUSTAKA

- *I.* Singgih, Santoso. *Menguasai SPSS Versi 25; Cara praktis & cepat belajar statistik dengan SPSS 25, Dengan studi kasus, all in one!*.Jakarta: Gramedia, 2018.
- 2. Singgih, Santoso. *Mahir Statistik Multivariat dengan SPSS*. Jakarta: Gramedia, 2018.
- 3. Singgig Santoso. Buku Latihan SPSS Statistik Parametrik. Jakarta: Gramedia, 2018.
- 4. Budi Susetyo, D. M. 2018. Statistika untuk Analisis Data Penelitian. Yogyakarta: Sosial Agency, 2018.
- 5. Abdul Rahim *. Statistika dalam Penelitian Pendidikan.* Ejournal.iain. jember.ac.id,2016.
- 6. Anas, Sudijono. Pengantar Statistik Pendidikan. Jakarta: RajaGrafindo P,2016.
- 7. Dadan Rosana, Didik Setyawarno. *Statistik Penerapan Untuk Penelitian Pendidikan Disertai Dengan Analisis Dengan Analisis SPSS Versi 22*, Yogyakarta:30 November.2016.
- 8. Furqon. Statistika Terapan untuk Penelitian.Bandung: Alfabeta,2008.
- 9. Riduwan. Dasar-dasar Statistika: Bandung: Alfabeta, 2008.
- 10. Riduwan, Sunarto. Pengantar Statistika: untuk Penelitian Pendidikan, Sosial, Ekonomi Komunikas, dan Bisnis. Bandung: Alfabeta, 2009.
- 11. Sugiyono. 2013. *Statistik Pendidikan.* Bandung: Alfabeta, 2013.
- 12. Sugiyono. Statistika Untuk Penelitian. Bandung: Alfabeta, 2013.

TENTANG PENULIS

Wiwin Arbaini W adalah lulusan program Master Penelitian dan Evaluasi Pendidikan (PEP) Universitas Negeri Yogyakarta pada tahun 2001, yang sekarang bekerja sebagai dosen Evaluasi Pendidikan, Statistik Pendidikan, dan Metodologi Penelitian di Fakultas Tarbiyah IAIN Curup

Email: wiwin721004@gmail.com