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Abstract The purpose of this work is to design a novel nonlinear fractional seventh kind of singular
(NSKS) Emden–Fowler model (EFM), i.e., NSKS-EFM together with its six categories. The novel design
of NSKS-EFM is obtained with the use of typical EFM of the second kind. The shape factor and singular
points detail is accessible for all six categories of the NSKS-EFM. The singular problems arise in the
mathematical engineering problems, like as inverse models, creep or viscoelasticity problems. To check the
correctness of the designed novel NSKS-EFM, three different cases of the first category will be solved by
using the supervised neural networks (SNNs) together with the Levenberg–Marquardt backpropagation
method (LMBM), i.e., SNNs-LMBM. A reference dataset based on the exact solutions with the SNNS-
LMBM will be performed for each case of the novel NSKS-EFM. The obtained approximate solutions of
all three cases of the first group based on the novel NSKS-EFM is available using the testing, training and
verification procedures of the proposed NNs to summarize the mean square error (MSE) along with the
LMBM. To check the efficiency, effectiveness, and correctness of the novel NSKS-EFM and the proposed
SNNS-LMBM, the numerical investigations are obtainable using the comparative actions of MSE results,
regression, error histograms and correlation.

1 Introduction

The singular problems arise in the mathematical engi-
neering problems, like as inverse models, creep or vis-
coelasticity problems. For multi variables, the ordinary
differential system has gotten much importance due to
the extensive implementations in engineering and scien-
tific and fields, e.g., chemical reactor, astrophysics, bio-
logical fields, nonlinear circuits areas, optimization of
control theory, fluid dynamics, and theory of boundary
layer [1–6]. The current investigations are associated to
the Emden–Fowler model (EFM) that has a singular-
ity at the origin, considered difficult and complicated
to solve due to the stiffer nature. The research commu-
nity always interested to solve such kinds of EFM using
a variety of numerical as well as analytical schemes.
The EFM has numerous submissions in engineering,
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fluid dynamics, population growth system, relativistic
mechanics, pattern creation system and an investiga-
tion of the chemical reactor [7–10]. The EFM is a second
kind of singular mathematical model, given as [11–13]:

{
Dα

τ ρ + ξ
τ Dβ

τ ρ + g(τ)a(ρ) = 0, ξ ≥ 1
ρ(0) = ε, dρ(0)

dτ = 0,
(1)

where τ = 0 shows the singularity at the origin, ξ repre-
sents the value of the shape factor and α and β represent
the order of differential terms. For g(τ) = 1, the EFM
takes the form of Lane–Emden system (LES), written
as:

{
Dα

τ ρ + ξ
τ Dβ

τ ρ + a(ρ) = 0, ξ ≥ 1
ρ(0) = ε, dρ(0)

dτ = 0.
(2)

The LES signified in Eq. (2) presented by famous
astrophysicists Lane and then explored by Emden. This
celebrated historical system is applied in the model-
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ing of the temperature variational system of a gas
cloud, mathematical physics, radiative cooling, stel-
lar arrangement, polytropic star construction based on
astrophysics, self-gravitating clouds of gas and the clus-
ter galaxies modeling [14,15]. The term a(ρ) seems in
numerous forms in the LES and has different forms,
a(ρ) = ρl signifies the most popular and common form,
which attracted the researcher community, for l = 0 and
1, the LES shows a linear equation, otherwise it presents
a nonlinear performance. The LES indicates the isother-
mal form of the gas sphere for a(ρ) = eρ. Moreover, a(τ)
indicates the nonlinearity, like as cosu, sinu, sinhu
and coshu, etc. The LES takes the form of white-dwarf
system for a(ρ) =

(
ρ2 − C

)1.5 accessible by Chan-
drasekhar [16]. The LES is implemented in density
gaseous star state [17], mathematical physics system
[18], electromagnetic [19], sublinear neutral span [20],
oscillating magnetic systems [21], quantum mechanics
model [22], isotropic-based continuous media [23] and
stellar construction systems [10]. Since the invention of
these models, many analytical and numerical solution
techniques have been proposed to solve such singular
systems. These systems having singularity are not easy
to handle and only a limited existing scheme has been
used to tackle such models [24–32].

To solve the singular model is also a big challenge
for the research community due to the singular point
and only a few analytic/numerical approaches are avail-
able to handle such systems. Few reported schemes are
presented to solve the singular systems are Adomian
decomposition discussed by Shawagfeh et al. [33], the
series scheme is presented by Romas et al. [34], the
Legendre wavelet spectral is applied by Dizicheh et al.
[35], the Haar Adomian method is proposed by Saeed
et al. [36], the reproduced kernel as well as group pre-
serving approaches discussed by Hashemi et al. [37], a
novel third kind of functional differential singular sys-
tem using the differential transformation approach is
proposed by Sabir et al [38]. The singular models have
been solved by using the optimization based swarming
and heuristic schemes have been provided in these refer-
ences [39–42]. These are appreciated inspiration aspects
to investigate in neural networks-based solver for stiff
nonlinear fractional seventh order singular systems.

The aim of this work is to design a novel nonlin-
ear fractional seventh kind of singular (NSKS) Emden–
Fowler model (EFM), i.e., NSKS-EFM together with
its six categories. This novel design of NSKS-EFM is
obtained with the use of typical EFM of the second
kind. The solution of the novel NSKS-EFM is pre-
sented numerically using the supervised neural net-
works (SNNs) together with the Levenberg–Marquardt
backpropagation method (LMBM), i.e., SNNs-LMBM.
The novel features of the present investigations are
stated as follows:

• The design of a novel NSKS-EFM together with its
six categories is presented using the typical EFM
along with the detail of the singularity of each case
along with the shape factor.

• The solution dynamics of the first category of the
NSKS-EFM is presented effectively in three different
cases using the stochastic procedures based on the
SNNs-LMBM.

• A reference dataset using the exact solutions the
first category of the novel NSKS-EFM is effectively
exploiting for the creation of an approximate solu-
tion for stochastic SNNs-LMBM.

• The overlapping of the obtained numerical solutions
establishes the value of the stochastic SNNs-LMBM
to solve three cases based the first category of the
novel NSKS-EFM.

• The SNNs-LMBM performance through compara-
tive investigations on error histograms (EHs), cor-
relation, regression metrics and mean square error
(MSE) shows the strength of the stochastic schemes.

The rest of the parts of the paper are organized as: The
structure of the novel NSKS-EFM with six groups is
shown in Sect. 2. The solution of the three cases of the
novel NSKS-EFM is derived in Sect. 3. The compre-
hensive details of the stochastic SNNs-LMBM, essen-
tial description and results of the novel NSKS-EFM
through SNNs-LMBM are listed in Sect. 4. The final
remarks and future research directions are listed in the
final section.

2 Design of novel NSKS-EFM

This section provides the six different groups based on
the novel NSKS-EFM along with the detail of shape fac-
tors and singular points for each group. The obtained
novel model and its initial conditions (ICs) are achieved
on the basis of typical EFM. The mathematical deriva-
tion of the novel NSKS-EFM is provided as:

{
τ−q1Db

τ

(
τ q1 dc

dτc

)
ρ1 + g1(τ)f1(ρ1, ρ2) = k1(τ),

τ−q2Db
τ

(
τ q2 dc

dτc

)
ρ2 + g2(τ)f2(ρ1, ρ2) = k2(τ),

(3)

where q1and q2 are the positive and real values, k1(τ)
and k2(τ) are the values of forcing functions, g1(τ)
and g2(τ) represent the function values, f1(ρ1, ρ2) and
f2(ρ1, ρ2) indicate the linear/nonlinear based functions
of ρ1 and ρ2. For the mathematical derivation of the
novel NSKS-EFM, the values of b and c must be signi-
fied as:

b + c = 7, b, c ≥ 1. (4)
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The following six possibilities satisfy the above equa-
tion as:

b = 6, c = 1, (5)
b = 5, c = 2, (6)
b = 4, c = 3, (7)
b = 3, c = 4, (8)
b = 2, c = 5, (9)
b = 1, c = 6, (10)

Type 1: The first group of the novel NSKS-EFM is
achieved by using the Eqs. (5) and (3), which is written
as:

⎧⎨
⎩

τ−q1 d6

dτ6

(
τ q1 d

dτ

)
ρ1 + g1(τ)h1(ρ1, ρ2) = k1(τ),

τ−q2 d6

dτ6

(
τ q2 d

dτ

)
ρ2 + g2(τ)h2(ρ1, ρ2) = k2(τ),

(11)

The derivatives term in the Eq. (11) is written as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d6

dτ6

(
τq1 d

dτ

)
ρ1 = τq1 d7ρ1

dτ7 + 6q1τq1−1 d6ρ1
dτ6

+15q1(q1 − 1)τq1−2 d5ρ1
dτ5

+20q1(q1 − 1)(q1 − 2)τq1−3 d4ρ1
dτ4

15q1(q1 − 1)(q1 − 2)(q1 − 3)τq1−4 d3ρ1
dτ3

+6q1(q1 − 1)(q1 − 2)(q1 − 3)(q1 − 4)τq1−5 d2ρ1
dτ2

+q1(q1 − 1)(q1 − 2)(q1 − 3)(q1 − 4)(q1 − 5)τq1−6 dρ1
dτ

,

d6

dτ6

(
τq2 d

dτ

)
ρ2 = τq2 d7ρ2

dτ7 + 6q2τq2−1 d6ρ2
dτ6

+15q2(q2 − 1)τq2−2 d5ρ2
dτ5

+20q2(q2 − 1)(q2 − 2)τq2−3 d4ρ2
dτ4

15q2(q2 − 1)(q2 − 2)(q2 − 3)τq2−4 d3ρ2
dτ3

+6q2(q2 − 1)(q2 − 2)(q2 − 3)(q2 − 4)τq2−5 d2ρ2
dτ2

+q2(q2 − 1)(q2 − 2)(q2 − 3)(q2 − 4)(q2 − 5)τq2−6 dρ2
dτ

,

(12)

The obtained form using the above two equations
becomes as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d7ρ1
dτ7 + 6q1

τ
d6ρ1
dτ6 + 15q1(q1−1)

τ2
d5ρ1
dτ5

+ 20q1(q1−1)(q1−2)
τ3

d4ρ1
dτ4

+ 15q1(q1−1)(q1−2)(q1−3)
τ4

d3ρ1
dτ3

+ 6q1(q1−1)(q1−2)(q1−3)(q1−4)
τ5

d2ρ1
dτ2

+ q1(q1−1)(q1−2)(q1−3)(q1−4)(q1−5)
τ6

dρ1
dτ

+g1(τ)h1(ρ1, ρ2) = k1(τ),
d7ρ2
dτ7 + 6q2

τ
d6ρ2
dτ6 + 15q2(q2−1)

τ2
d5ρ2
dτ5

+ 20q2(q2−1)(q2−2)
τ3

d4ρ2
dτ4

+ 15q2(q2−1)(q2−2)(q2−3)
τ4

d3ρ2
dτ3

+ 6q2(q2−1)(q2−2)(q2−3)(q2−4)
τ5

d2ρ2
dτ2

+ q2(q2−1)(q2−2)(q2−3)(q2−4)(q2−5)
τ6

dρ2
dτ

+g2(τ)h2(ρ1, ρ2) = k2(τ),

(13)

The corresponding ICs for the above equation are
written as:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ρ1(0) = I1,
dρ1(0)
dτ = 0, d2ρ1(0)

dτ2 = 0, d3ρ1(0)
dτ3 = 0,

d4ρ1(0)
dτ4 = 0, d5ρ1(0)

dτ5 = 0, d6ρ1(0)
dτ6 = 0

ρ2(0) = I2,
dρ2(0)
dτ = 0, d2ρ2(0)

dτ2 = 0, d3ρ2(0)
dτ3 = 0,

d4ρ2(0)
dτ4 = 0, d5ρ2(0)

dτ5 = 0, d6ρ2(0)
dτ6 = 0

(14)

The achieved form of above two equations repre-
sents the multiple singular points, nonlinear forms, frac-
tional seventh order along with the differential equa-
tion system. The singularity at τ = 0 appears six times
for both the parameters ρ1(τ) and ρ2(τ), respectively.
The shape factor values are 6q1, 15q1(q1 − 1), 20q1(q1 −
1)(q1 − 2), 15q1(q1 − 1)(q1 − 2)(q1 − 3),6q1(q1 − 1)(q1 −
2)(q1 − 3)(q1 − 4) and q1(q1 − 1)(q1 − 2)(q1 − 3)(q1 −
4)(q1 − 5) for ρ1(τ), while for ρ2(τ), the shape fac-
tors is 6q2, 15q2(q2 − 1), 20q2(q2 − 1)(q2 − 2), 15q2(q2 −
1)(q2 −2)(q2 −3),6q2(q2 −1)(q2 −2)(q2 −3)(q2 −4) and
q2(q2 −1)(q2 −2)(q2 −3)(q2 −4)(q2 −5), respectively. It
is noted for q1 = q2 = 1, the third, fourth, fifth, sixth
and seventh expressions vanish for the ρ1(τ) and ρ2(τ)
parameters and the shape factor values reduces to 6. For
q1 = q2 = 2 the fourth, fifth, sixth and seventh expres-
sions vanish for the ρ1(τ) and ρ2(τ) parameters and the
shape factor values reduces to 12 and 30, respectively.
For q1 = q2 = 3, the fifth, sixth and seventh expres-
sions vanish for the ρ1(τ) and ρ2(τ) parameters and the
shape factor values reduces to 18, 90 and 120, respec-
tively. Similarly, for q1 = q2 = 4, the sixth and seventh
expressions vanish for the ρ1(τ) and ρ2(τ) parameters
and the shape factor values reduces to 24, 180, 480 and
360, respectively. Moreover, for q1 = q2 = 5, the seventh
expression vanishes for the ρ1(τ) and ρ2(τ) parameters
and the shape factor values reduces to 30, 300, 1200,
1800 and 720, respectively.
Type 2: The second group of the novel NSKS-EFM

is achieved by using the Eqs. (3) and (6), which is writ-
ten as:

⎧⎪⎨
⎪⎩

τ−q1 d5

dτ5

(
τ q1 d2

dτ2

)
ρ1 + g1(τ)f1(ρ1, ρ2) = k1(τ),

τ−q2 d5

dτ5

(
τ q2 d2

dτ2

)
ρ2 + g2(τ)f2(ρ1, ρ2) = k2(τ),

(15)
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The derivatives term in the Eq. (15) is written as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d5

dτ5

(
τ q1 d2

dτ2

)
ρ1 = 5τ q1 d6p1

dτ6 + 10q1τ
q1−1 d5p1

dτ5

+10q1(q1 − 1)τ q1−2 d4p1
dτ4

+5q1(q1 − 1)(q1 − 2)τ q1−3 d3p1
dτ3

+q1(q1 − 1)(q1 − 2)(q1 − 3)τ q1−4 d2p1
dτ2 ,

d5

dτ5

(
τ q2 d2

dτ2

)
ρ2 = 5τ q2 d6p2

dτ6 + 10q2τ
q2−1 d5p2

dτ5

+10q2(q2 − 1)τ q2−2 d4p2
dτ4 +

5q2(q2 − 1)(q2 − 2)τ q2−3 d3p2
dτ3

+q2(q2 − 1)(q2 − 2)(q2 − 3)τ q2−4 d2p2
dτ2 ,

(16)

The obtained mathematical form using the above two
equations becomes as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d7ρ1
dτ7 + 5q1

τ
d6ρ1
dτ6 + 10q1(q1−1)

τ2
d5ρ1
dτ5

+ 10q1(q1−1)(q1−2)
τ3

d4ρ1
dτ4

+ 5q1(q1−1)(q1−2)(q1−3)
τ4

d3ρ1
dτ3

+ q1(q1−1)(q1−2)(q1−3)(q1−4)
τ5

d2ρ1
dτ2

+g1(τ)h1(ρ1, ρ2) = k1(τ),
d7ρ2
dτ7 + 5q2

τ
d6ρ2
dτ6 + 10q2(q2−1)

τ2
d5ρ2
dτ5

+ 10q2(q2−1)(q2−2)
τ3

d4ρ2
dτ4

+ 5q2(q2−1)(q2−2)(q2−3)
τ4

d3ρ2
dτ3

+ q2(q2−1)(q2−2)(q2−3)(q2−4)
τ5

d2ρ2
dτ2

+g2(τ)h2(ρ1, ρ2) = k2(τ),

(17)

The corresponding ICs for the above equation are
written as:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ρ1(0) = I1,
dρ1(0)
dτ = I3,

d2ρ1(0)
dτ2 = 0, d3ρ1(0)

dτ3 = 0,

d4ρ1(0)
dτ4 = 0, d5ρ1(0)

dτ5 = 0, d6ρ1(0)
dτ6 = 0,

ρ2(0) = I2,
dρ2(0)
dτ = I4,

d2ρ2(0)
dτ2 = 0, d3ρ2(0)

dτ3 = 0,

d4ρ2(0)
dτ4 = 0, d5ρ2(0)

dτ5 = 0, d6ρ2(0)
dτ6 = 0.

(18)

The achieved form of above two equations represents
the multiple singular points, nonlinear forms, fractional
seventh order along with the differential equations sys-
tem. The singularity at τ = 0 appears five times
for both the parameters ρ1(τ) and ρ2(τ), respectively.
The shape factor values are 5q1, 10q1(q1 − 1), 10q1(q1 −
1)(q1−2), 5q1(q1−1)(q1−2)(q1−3) and q1(q1−1)(q1−
2)(q1−3)(q1−4) forρ1(τ), whereas for the ρ2(τ) param-
eter, the values of the shape factors are 5q2, 10q2(q2 −
1), 10q2(q2 − 1)(q2 − 2), 5q2(q2 − 1)(q2 − 2)(q2 − 3) and
q2(q2−1)(q2−2)(q2−3)(q2−4), respectively. It is noted

for q1 = q2 = 1, the third, fourth, fifth and sixth expres-
sions vanish for the ρ1(τ) and ρ2(τ) parameters and
the shape factor values reduces to 5. For q1 = q2 = 2,
the fourth, fifth and sixth expressions vanish for the
ρ1(τ) and ρ2(τ) parameters and the shape factor val-
ues reduces to 10 and 20, respectively. For q1 = q2 = 3,
the fifth and sixth expressions vanish for the ρ1(τ) and
ρ2(τ) parameters and the shape factor values reduces to
15, 60 and 60, respectively. Similarly, for q1 = q2 = 4,
the sixth expressions vanish for the ρ1(τ) and ρ2(τ)
parameters and the shape factor values reduces to 20,
120, 240 and 120, respectively.
Type 3: The third group of the novel NSKS-EFM

is achieved by using the Eqs. (3) and (7) , which is
written as:

⎧⎪⎨
⎪⎩

τ−q1 d4

dτ4

(
τ q1 d3

dτ3

)
ρ1 + g1(τ)f1(ρ1, ρ2) = k1(τ),

τ−q2 d4

dτ4

(
τ q2 d3

dτ3

)
ρ2 + g2(τ)f2(ρ1, ρ2) = k2(τ),

(19)

The derivatives term in the Eq. (19) is written as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d4

dτ4

(
τ q1 d3

dτ3

)
ρ1 = τ q1 d7ρ1

dτ7 + 4q1τ
q1−1 d6ρ1

dτ6

+6q1(q1 − 1)τ q1−2 d5ρ1
dτ5

+4q1(q1 − 1)(q1 − 2)τ q1−3 d4ρ1
dτ4

q1(q1 − 1)(q1 − 2)(q1 − 3)τ q1−4 d3ρ1
dτ3 ,

d4

dτ4

(
τ q2 d3

dτ3

)
ρ2 = τ q2 d7ρ2

dτ7 + 4q2τ
q2−1 d6ρ1

dτ6

+6q2(q2 − 1)τ q2−2 d5ρ2
dτ5

+4q2(q2 − 1)(q2 − 2)τ q2−3 d4ρ2
dτ4

q2(q2 − 1)(q2 − 2)(q2 − 3)τ q2−4 d3ρ2
dτ3 ,

(20)

The obtained mathematical form using the above two
equations is becomes as:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

d7ρ1
dτ7 + 4q1

τ
d6ρ1
dτ6 + 6q1(q1−1)

τ2
d5ρ1
dτ5 + 4q1(q1−1)(q1−2)

τ3
d4ρ1
dτ4

+ q1(q1−1)(q1−2)(q1−3)
τ4

d3ρ1
dτ3 + g1(τ)h1(ρ1, ρ2) = k1(τ),

d7ρ2
dτ7 + 4q2

τ
d6ρ2
dτ6 + 6q2(q2−1)

τ2
d5ρ2
dτ5 + 4q2(q2−1)(q2−2)

τ3
d4ρ2
dτ4 +

q2(q2−1)(q2−2)(q2−3)
τ4

d3ρ2
dτ3 + g2(τ)h2(ρ1, ρ2) = k2(τ),

(21)

The corresponding ICs for the above equation are
written as:
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ρ1(0) = I1,
dρ1(0)
dτ = I3,

d2ρ1(0)
dτ2 = I5,

d3ρ1(0)
dτ3 = 0,

d4ρ1(0)
dτ4 = 0, d5ρ1(0)

dτ5 = 0, d6ρ1(0)
dτ6 = 0,

ρ2(0) = I2,
dρ2(0)
dτ = I4,

d2ρ2(0)
dτ2 = I6,

d3ρ2(0)
dτ3 = 0,

d4ρ2(0)
dτ4 = 0, d5ρ2(0)

dτ5 = 0, d6ρ2(0)
dτ6 = 0.

(22)

The achieved mathematical form of above two equa-
tions represents the multiple singular points, nonlinear

123



Eur. Phys. J. Spec. Top.

forms, fractional seventh order along with the differen-
tial equations system. The singularity at τ = 0 appears
four times for both the parameters ρ1(τ) and ρ2(τ),
respectively. The shape factor values are 4q1, 6q1(q1−1),
4q1(q1−1)(q1−2) and q1(q1−1)(q1−2)(q1−3), forρ1(τ),
whereas for the ρ2(τ) parameter, the values of the shape
factors are 4q2, 6q2(q2 − 1), 4q2(q2 − 1)(q2 − 2) and
q2(q2 − 1)(q2 − 2)(q2 − 3), respectively. It is noted that
for q1 = q2 = 1, the third, fourth and fifth terms vanish
for the parameters ρ1(τ) and ρ2(τ), the shape factors
for ρ1(τ) and ρ2(τ) reduces to 4. For q1 = q2 = 2, the
fourth and fifth terms vanish for ρ1(τ) andρ2(τ), while
the shape factor for both of the parameters ρ1(τ) and
ρ2(τ) reduces to 8 and 12, respectively. Similarly, for
q1 = q2 = 3, the fifth expressions vanish for the ρ1(τ)
and ρ2(τ), while the shape factor values reduces to 12,
36 and 24, respectively.
Type 4: The fourth group of the novel NSKS-EFM is

achieved by using the Eqs. (3) and (8), which is written
as:

⎧⎪⎨
⎪⎩

τ−q1 d3

dτ3

(
τ q1 d4

dτ4

)
ρ1 + g1(τ)f1(ρ1, ρ2) = k1(τ),

τ−q2 d3

dτ3

(
τ q2 d4

dτ4

)
ρ2 + g2(τ)f2(ρ1, ρ2) = k2(τ),

(23)

The derivatives term in the Eq. (23) is written as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d3

dτ3

(
τ q1 d4

dτ4

)
ρ1 = τ q1 d7ρ1

dτ7 + 3q1τ
q1−1 d6ρ1

dτ6

+3q1(q1 − 1)τ q1−2 d5ρ1
dτ5

+q1(q1 − 1)(q1 − 2)τ q1−3 d4ρ1
dτ4 ,

d3

dτ3

(
τ q2 d4

dτ4

)
ρ2 = τ q2 d7ρ2

dτ7 + 3q2τ
q2−1 d6ρ2

dτ6

+3q2(q2 − 1)τ q2−2 d5ρ2
dτ5

+q2(q2 − 1)(q2 − 2)τ q2−3 d4ρ2
dτ4 ,

(24)

The obtained mathematical form using the above two
equations is becomes as:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d7ρ1
dτ7 + 3q1

τ
d6ρ1
dτ6 + 3q1(q1−1)

τ2
d5ρ1
dτ5

+ q1(q1−1)(q1−2)
τ3

d4ρ1
dτ4 + g1(τ)h1(ρ1, ρ2) = k1(τ),

d7ρ2
dτ7 + 3q2

τ
d6ρ2
dτ6 + 3q2(q2−1)

τ2
d5ρ2
dτ5

+ q2(q2−1)(q2−2)
τ3

d4ρ2
dτ4 + g2(τ)h2(ρ1, ρ2) = k2(τ),

(25)

The corresponding ICs for the above equation are
written as:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ρ1(0) = I1,
dρ1(0)
dτ = I3,

d2ρ1(0)
dτ2 = I5,

d3ρ1(0)
dτ3 = I7,

d4ρ1(0)
dτ4 = d5ρ1(0)

dτ5 = d6ρ1(0)
dτ6 = 0,

ρ2(0) = I2,
dρ2(0)
dτ = I4,

d2ρ2(0)
dτ2 = I6,

d3ρ2(0)
dτ3 = I8,

d4ρ2(0)
dτ4 = d5ρ2(0)

dτ5 = d6ρ2(0)
dτ6 = 0.

(26)

The achieved mathematical form of above two equa-
tions represents the multiple singular points, nonlinear
forms, fractional seventh order along with the differen-
tial equations system. The singularity at τ = 0 appears
three times for both the parameters ρ1(τ) and ρ2(τ),
respectively. The shape factor values are 3q1, 3q1(q1−1)
and q1(q1 − 1)(q1 − 2) for ρ1(τ), while for the ρ2(τ)
parameter, the shape factors is 3q2 3q2(q2 − 1) and
q2(q2 − 1)(q2 − 2), respectively. It is noted that for
q1 = q2 = 1, the third and fourth expressions for the
ρ1(τ) and ρ2(τ) vanish, while the values of the shape
factor ρ1(τ) and ρ2(τ) reduces to 3. For q1 = q2 = 2,
the fourth term vanishs for ρ1(τ) and ρ2(τ), while the
shape factor for both of the parameters ρ1(τ) and ρ2(τ)
reduces to 6 and 6, respectively.
Type 5: The fifth group of the novel NSKS-EFM is

achieved by using the Eqs. (3) and (8), which is written
as:

⎧⎪⎨
⎪⎩

τ−q1 d2

dτ2

(
τ q1 d5

dτ5

)
ρ1 + g1(τ)f1(ρ1, ρ2) = k1(τ),

τ−q2 d2

dτ2

(
τ q2 d5

dτ5

)
ρ2 + g2(τ)f2(ρ1, ρ2) = k2(τ),

(27)

The derivatives term in the Eq. (27) is written as:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

d2

dτ2

(
τ q1 d5

dτ5

)
ρ1 = τ q1 d7ρ1

dτ7 + 2q1τ
q1−1 d6ρ1

dτ6

+q1(q1 − 1)τ q1−2 d5ρ1
dτ5 ,

d2

dτ2

(
τ q2 d5

dτ5

)
ρ2 = τ q2 d7ρ2

dτ7 + 2q2τ
q2−1 d6ρ2

dτ6

+q2(q2 − 1)τ q2−2 d5ρ2
dτ5 ,

(28)

The obtained mathematical form using the above two
equations is becomes as:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d7ρ1
dτ7 + 2q1

τ
d6ρ1
dτ6 + q1(q1−1)

τ2
d5ρ1
dτ5

+g1(τ)h1(ρ1, ρ2) = k1(τ),
d7ρ2
dτ7 + 2q2

τ
d6ρ2
dτ6 + q2(q2−1)

τ2
d5ρ2
dτ5

+g2(τ)h2(ρ1, ρ2) = k2(τ),

(29)
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Fig. 1 Workflow illustrations using the SNNs-LMBM for solving the novel NSKS-EFM
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Fig. 2 Designed network using the structure of single neu-
rons

The corresponding ICs for the above equation are
written as:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ρ1(0) = I1,
dρ1(0)
dτ = I3,

d2ρ1(0)
dτ2 = I5,

d3ρ1(0)
dτ3 = I7,

d4ρ1(0)
dτ4 = I9,

d5ρ1(0)
dτ5 = d6ρ1(0)

dτ6 = 0,

ρ2(0) = I2,
dρ2(0)
dτ = I4,

d2ρ2(0)
dτ2 = I6,

d3ρ2(0)
dτ3 = I8,

d4ρ2(0)
dτ4 = I10,

d5ρ2(0)
dτ5 = d6ρ2(0)

dτ6 = 0.

(30)

The achieved mathematical form of above two equa-
tions represents the multiple singular points, nonlinear
forms, fractional seventh order along with the differen-
tial equations system. The singularity at τ = 0 appears
twice for both the parameters ρ1(τ) and ρ2(τ), respec-
tively. The singularity appears twice at τ = 0 for the
ρ1(τ) and ρ2(τ), respectively. The shape factor values
are 2q1 and q1(q1 − 1) for ρ1(τ), while, for the ρ2(τ)
parameter, the shape factor are 2q2 and q2(q2 − 1),
respectively.
Type 6: The sixth group of the novel NSKS-EFM is

achieved by using the Eqs. (3) and (8), which is written
as:

⎧⎪⎨
⎪⎩

τ−q1 d
dτ

(
τ q1 d6

dτ6

)
ρ1 + g1(τ)f1(ρ1, ρ2) = k1(τ),

τ−q2 d
dτ

(
τ q2 d6

dτ6

)
ρ2 + g2(τ)f2(ρ1, ρ2) = k2(τ),

(31)

The obtained mathematical form using the above two
equations is becomes as:

⎧⎪⎨
⎪⎩

d
dτ

(
τ q1 d6

dτ6

)
ρ1 = τ q1 d7ρ1

dτ7 + q1τ
q1−1 d6ρ1

dτ6 ,

d
dτ

(
τ q2 d6

dτ6

)
ρ2 = τ q2 d7ρ2

dτ7 + q2τ
q2−1 d6ρ2

dτ6 ,
(32)

The obtained mathematical form using the above two
equations is becomes as:

⎧⎨
⎩

d7ρ1
dτ7 + q1

τ
d6ρ1
dτ6 + g1(τ)h1(ρ1, ρ2) = k1(τ),

d7ρ2
dτ7 + q2

τ
d6ρ2
dτ6 + g2(τ)h2(ρ1, ρ2) = k2(τ),

(33)

The corresponding ICs for the above equation are
written as:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ρ1 = I1,
dρ1
dτ = I3,

d2ρ1
dτ2 = I5,

d3ρ1
dτ3 = I7,

d4ρ1
dτ4 = I9,

d5ρ1
dτ5 = I11,

d6ρ1
dτ6 = 0,

ρ2 = I2,
dρ2
dτ = I4,

d2ρ2
dτ2 = I6,

d3ρ2
dτ3 = I8,

d4ρ2
dτ4 = I10,

d5ρ2
dτ5 = I12,

d6ρ2
dτ6 = 0.

atτ → 0 (34)

The achieved mathematical form of above two equa-
tions represents the multiple singular points, nonlinear
forms, fractional seventh order along with the differen-
tial equations system. The singularity at τ = 0 appears
single time for both the parameters ρ1(τ) and ρ2(τ),
respectively. The singularity at τ = 0 shows one time
for the ρ1(τ) and ρ2(τ), respectively. The shape factor
values are q1 and q2 for the parameters ρ1(τ) and ρ2(τ),
respectively.

3 Methodology

In this section, the designed methodology for solving
the novel NSKS-EFM is structured in two steps; first,
necessary descriptions are provided to get the refer-
ence dataset for the designed SNNs-LMBM. Secondly,
the implementation procedures for the designed SNNs-
LMBM are described. The workflow illustrations are
defined in Fig. 1. The reference dataset based on the
exact solutions is proposed to check the comparison
of the obtained results. The proposed SNNs-LMBM is
the combination of the multi-layer SNNs along with
the optimization procedures of the LMBM. Figure 2
demonstrates a system of a single neuron in the SNNs
system, while the SNNS-LMBM is implemented using
the ‘nftool’ routine of NNs in the “Matlab” using the
training, testing and validation data, appropriate set-
ting of the hidden neurons and learning methodology.

4 Results and discussions

This section shows the three different cases of type 1
based on the novel NSKS-EFM. The numerical solu-
tions using the proposed SNNs-LMBM have been pro-
vided. The obtained form of the numerical outcomes
based on the SNNs-LMBM are considered in the input
[0, 1] with the step size of 0.01 for solving the novel
NSKS-EFM. The proposed SNNs-LMBM is executed
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Fig. 3 Designed framework of the SNNs-LMBM for solving the novel NSKS-EFM

Fig. 4 Performance curves using the MSE values based on the proposed SNNS-LMBM for solving the novel NSKS-EFM
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Fig. 5 State transition values for the proposed SNNs-LMBM to solve case 1, 2 and 3 of the novel NSKS-EFM

to solve each case of the novel NSKS-EFM using the
routine of ‘nftool’ in “Matlab” with 10 numbers of hid-
den layers, 80% of training and validation/testing data
is 10% for the optimization procedures of SNNs-LMBM.
The proposed SNNs-LMBM is illustrated in Fig 3, how-
ever, the SNNs-LMBM is proficient to solve each type
of the novel NSKS-EFM.

4.1 NSKS-EFM of type 1

In this type, three different cases of type 1 based on
the novel NSKS-EFM will be derived. These proposed
model-based nonlinear equations are obtained for the
values of q1 = q2 = 6 in the system (13).

Case 1: Consider the singular system based on the
NSKS-EFM is written as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d7ρ1
dτ7 + 36

τ
d6ρ1
dτ6 + 450

τ2
d5ρ1
dτ5 + 2400

τ3
d4ρ1
dτ4 + 4500

τ4
d3ρ1
dτ3

+ 4320
τ5

d2ρ1
dτ2 + 720

τ6
dρ1
dτ + ρ21ρ2

= 4656961 + τ7 − τ14 − τ21,

d7ρ2
dτ7 + 36

τ
d6ρ2
dτ6 + 450

τ2
d5ρ2
dτ5 + 2400

τ3
d4ρ2
dτ4 + 4500

τ4
d3ρ2
dτ3

+ 4320
τ5

d2ρ2
dτ2 + 720

τ6
dρ2
dτ + ρ1ρ

2
2

= −4656959 − τ7 − τ14 + τ21,

(35)
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Fig. 6 Result comparison of the SNNs-LMBM with the reference dataset for different cases of the novel NSKS-EFM

Case 2: Consider the NSKS-EFM-based system
using the multi-trigonometric ratios is written as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d7ρ1
dτ7 + 36

τ
d6ρ1
dτ6 + 450

τ2
d5ρ1
dτ5 + 2400

τ3
d4ρ1
dτ4 + 4500

τ4
d3ρ1
dτ3

+ 4320
τ5

d2ρ1
dτ2 + 720

τ6
dρ1
dτ + ρ1ρ2

= 1 + 4656960 cos (τ) − 2174040τ2 cos (τ)
+48180τ4 cos (τ) − 85τ6 cos (τ) − τ14 cos 2(τ)
−527200τ sin (τ) + 442200τ3 sin (τ)
−2844τ5 sin (τ) + τ7 sin (τ),

d7ρ2
dτ7 + 36

τ
d6ρ2
dτ6 + 450

τ2
d5ρ2
dτ5 + 2400

τ3
d4ρ2
dτ4 + 4500

τ4
d3ρ2
dτ3 +

4320
τ5

d2ρ2
dτ2 + 720

τ6
dρ2
dτ − ρ1ρ2

= −1 − 4656960 cos (τ) + 2174040τ2 cos (τ)
−48180τ4 cos (τ) + 85τ6 cos (τ) + τ14 cos 2(τ)
+527200τ sin (τ) − 442200τ3 sin (τ)
+2844τ5 sin (τ) − τ7 sin (τ),

(36)

Case 3: Consider the NSKS-EFM based system
using the singularity in its forcing function is written
as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d7ρ1
dτ7 + 36

τ
d6ρ1
dτ6 + 450

τ2
d5ρ1
dτ5 + 2400

τ3
d4ρ1
dτ4 + 4500

τ4
d3ρ1
dτ3

+ 4320
τ5

d2ρ1
dτ2 + 720

τ6
dρ1
dτ + ρ21ρ2

= 4656961 + 720
τ6 + 3τ + 3τ2 + τ3 + τ7 + 2τ8

+τ9 − τ14 − τ15 − τ21,

d7ρ2
dτ7 + 36

τ
d6ρ2
dτ6 + 450

τ2
d5ρ2
dτ5 + 2400

τ3
d4ρ2
dτ4 + 4500

τ4
d3ρ2
dτ3

+ 4320
τ5

d2ρ2
dτ2 + 720

τ6
dρ2
dτ − ρ1ρ

2
2

= −4656961 + 720
τ6 − 3τ − 3τ2 − τ3 + τ7 + 2τ8

+τ9 + τ14 + τ15 − τ21,

(37)
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Fig. 7 EHs for the SNNS-LMBM to solve the NSKS-EFM based case 1

The ICs of the above systems (35-37) are provided
as:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ρ1(0) = 1, dρ1(0)
dτ = 0, d2ρ1(0)

dτ2 = 0, d3ρ1(0)
dτ3 = 0,

d4ρ1(0)
dτ4 = 0, d5ρ1(0)

dτ5 = 0, d6ρ1(0)
dτ6 = 0

ρ2(0) = 1, dρ2(0)
dτ = 0, d2ρ2(0)

dτ2 = 0, d3ρ2(0)
dτ3 = 0,

d4ρ2(0)
dτ4 = 0, d5ρ2(0)

dτ5 = 0, d6ρ2(0)
dτ6 = 0.

(38)

The graphs of each case of the novel NSKS-EFM
using the designed SNNs-LMBM are illustrated in Figs.
4–8. The graphical results of the novel NSKS-EFM
based cases of type 1 based on the performance and
transition states are provided in Figs. 4 and 5, respec-
tively. The convergence through mean square error
(MSE) using the testing, training, validation and best
curve for each case of the novel NSKS-EFM is exam-
ined in Fig. 4. The performances of the best network are
derived at epoch 55, 114 and 436 around 4.981× 10−09,
9.050× 10−10 and 5.258× 10−10, respectively. The val-

ues of the gradient using the step-size (Mu) is esti-
mated using the designed SNNs-LMBM for each case
of novel NSKS-EFM are [2.296× 10−06, 9.050× 10−10

and 9.990× 10−08] and [1 × 10−08, 1 × 10−09 and 1×
10−08] illustrated in Fig. 5. These performances desig-
nate the convergence and correctness of the designed
SNNs-LMBM for each case of novel NSKS-EFM.

Figure 6 illustrates the curve fitting values for each
case of the novel NSKS-EFM. These plots specify the
results comparison of the SNNs-LMBM with the ref-
erence dataset of the novel NSKS-EFM based type 1
along with the error plots. The maximum error values
in the intervals of training, testing and validation for
the designed SNNs-LMBM lie in the ranges of 10−05 to
10−07 for each case of the novel NSKS-EFM. The plots
of EHs are illustrated in Fig. 7, which are performed
to scrutinize the error investigations for the input and
output grids to solve each case of the NSKS-EFM. The
average values of EHs with zero-line reference found
around 8.9× 10−06, 3.7 × 10−06 and 1.8× 10−06 for
cases 1, 2 and 3 of the novel NSKS-EFM.
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Fig. 8 Regression plots for solving the different cases of the NSKS-EFM

The regression value plots are illustrated in Fig. 8 for
each case of the NSKS-EFM. These graphical surveys
using the co-relation values are derived to check the
regression. It is noted that the correlation (R) values are
found around 1 for each case of the NSKS-EFM, which
designates the perfect model based on testing, valida-
tion and training. This mathematical behavior depicts

the precision of the SNNS-LMBM to solve the NSKS-
EFM. Additionally, the convergence performance via
MSE trials is achieved for the testing, training, perfor-
mance, backpropagation actions, validation, performed
epochs and time complexity are tabulated in Table 1
for solving the NSKS-EFM. One can see that the time
consumed for the formulation of the networks by SNNS-
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Table 1 SNNs-LMBM results for each case of the type-I of the novel NSKS-EFM

Case Level of MSE for samples Performance Gradient Mu Epoch Time

Training value Validation value Testing value

1 3.118× 10−09 4.981× 10−09 6.076× 10−09 2.43× 10−09 2.30× 10−06 1.00 × 10−08 55 6
2 9.067× 10−10 9.050× 10−10 1.168× 10−09 9.07× 10−10 9.93× 10−08 1.00 × 10−09 114 6
3 1.763× 10−10 5.258× 10−10 2.862× 10−10 1.76× 10−10 9.99× 10−08 1.00 × 10−08 436 6

Fig. 9 Results
comparison of the
SNNs-LMBM for solving
the NSKS-EFM

Fig. 10 AE values for the
parameters ρ1(τ) and ρ2(τ)
to solve the cases 1–3 using
the novel NSKS-EFM

LMBM for 10 neurons is consistently around 6 second
for all three cases of NSKS-EFM.

Figures 9 and 10 indicate the results comparison to
solve the NSKS-EFM based cases 1–3. The results of
the ρ1(τ) and ρ2(τ) using the novel NSKS-EFM based
case 1 are illustrated in Fig. 9. It is observed that the
results overlapping shows the accuracy and exactness
of the designed SNNs-LMBM. The absolute error (AE)
plots for each case of the NSKS-EFM are illustrated in
Fig. 10. These AE values of the parameters ρ1(τ) and
ρ2(τ) for cases 1-3 are drawn in Fig. 10. It is noticed
that the values of the AE for the parameters ρ1(τ) and
ρ2(τ) are found around [10−05, 10−08] for each case.
These overlapped values and good performances of the
AE show the correctness of the novel model, as well as,
reliable implementation of the designed SNNS-LMBM.

Conclusions

In this work, a novel nonlinear fractional seventh kind
of singular Emden–Fowler model together with its six
types is presented. This novel model is obtained with
the use of the typical Emden–Fowler model. Three dif-
ferent cases of the first type of the novel model are pre-
sented using the comprehensive detail of the singulari-
ties and the shape factors. It is noticed that the multiple
singularities as well as the shape factors are involved in
the first five groups, whereas the last group has a sin-
gle shape factor and singularity. The cases presented on
the behalf of the first type of the novel model involve
nonlinearity, multi trigonometric functions and singular
terms in its forcing functions. To solve the designed sin-
gular seventh order model, a supervised neural network
approach based on the Levenberg–Marquardt back-
propagation is presented. The data for the approxima-
tion for training is 80% and both for validation and
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testing is 10% using the optimal practice with 10 num-
bers of hidden neurons. To check the correctness of the
designed system and proposed stochastic scheme, the
overlapped plots have been obtained and the values
of the AE are found in good measures. For the MSE,
the convergence measures for the best curve, training,
validation and testing are presented in each case of
the novel model. The co-relation values are provided
to show the regression and the gradient performances
using the designed approach are assessed in each case
of the novel model. Additionally, the accuracy and pre-
cision are justified by plotting the regression dynamics,
EHs along with the convergence on MSE.

In future, the proposed scheme will be implemented
to solve the system of equation represented in the
fractional order problems, fluid mechanics models and
mathematical models for information security [43–54].
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43. H. Günerhan, E. Çelik, Analytical and approximate
solutions of fractional partial differential-algebraic equa-
tions. Appl. Math. Nonlinear Sci. 5(1), 109–120 (2020)

44. H.M. Baskonus et al., New complex hyperbolic struc-
tures to the lonngren-wave equation by using sine-
gordon expansion method. Appl. Math. Nonlinear Sci.
4(1), 141–150 (2019)
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